当前位置:首页 » 基础知识 » 小学数学基础教学知识总结
扩展阅读
二手动漫周边产品哪里买 2024-11-08 03:35:15
酷狗电台怎么设置歌词 2024-11-08 03:15:09

小学数学基础教学知识总结

发布时间: 2022-07-16 02:49:09

㈠ 小学数学总结

期末教学工作总结
短暂而又充实的一学期即将过去了,一学期来我与班上58位学生紧密地连在一起,发挥团队精神,以教务处的学期工作计划为思想宗旨,以开展“有效教学”的研究与实践为指导,推动我校素质教育的向前发展,着力开展以校为本的研究活动,促进教师的有效教学和学生有效学习的策略与方法的转变。探讨提高课堂教学效益的多种途径,全面提高教育、教学质量,提倡严谨、科学、务实的教学作风。在学校及教务处的领导下,按期初制定好的计划有条不紊地开展工作,认真完成各项任务。现总结如下:
1、认真备课,不但备学生而且备教材备教法,根据教材内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。每一课都做到“有备而来”,每堂课都在课前作好充分的准备,并制作各种有利于吸引学生注意力的有趣教具,课后及时对该课作出总结,写好教学后记,并认真按搜集每课书的知识要点,归纳成集。
2、增强上课技能,提高教学质量,使讲解清晰化,准确化,条理化,情感化,生动化,做到线索清晰,层次分明,言简意赅,深入浅出。在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主观能动作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师尽量讲得少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高。
3、虚心请教其他老师。在教学上,有疑必问。在各个章节的学习上都积极征求其他老师的意见,学习他们的方法,同时,多听优秀老师的课,做到边听边讲,学习别人的优点,克服自己的不足,并常常邀请其他老师来听课,征求他们的意见,改进工作。
4、认真批改作业, 布置作业做到精读精练。有针对性,有层次性。为了做到这点,我常常到各大书店去搜集资料,对各种辅助资料进行筛选,力求每一次练习都起到最大的效果。同时对学生的作业批改及时、认真,分析并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结,进行透切的评讲,并针对有关情况及时改进教学方法,做到有的放矢。
5、做好课后辅导工作,注意分层教学。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。对后进生的辅导,并不限于学习知识性的辅导,更重要的是学习思想的辅导,要提高后进生的成绩,首先要解决他们的心结,让他们意识到学习的重要性和必要性,使之对学习萌发兴趣。要通过各种途径激发他们的求知欲和上进心,让他们意识到学习并不是一项任务,也不是一件痛苦的事情。而是充满乐趣的。从而自觉的把身心投放到学习中去。这样,后进生的转化,就由原来的简单粗暴、强制学习转化到自觉的求知上来。使学习成为他们自我意识力度一部分。在此基础上,再教给他们学习的方法,提高他们的技能。并认真细致地做好查漏补缺工作。后进生通常存在很多知识断层,这些都是后进生转化过程中的拌脚石,在做好后进生的转化工作时,要特别注意给他们补课,把他们以前学习的知识断层补充完整,这样,他们就会学得轻松,进步也快,兴趣和求知欲也会随之增加。
当然,工作中夜存在一些不足,比如:1、教材挖掘不深入;2、教法不灵活,不能吸引学生学习,对学生的引导、启发不足;3、新课标下新的教学思想学习不深入。对学生的自主学习 , 合作学习 , 缺乏理论指导;4、差生末抓在手。由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数,导致了教学中的盲目性;5、教学反思不够深入;6、自订的学生提问问题的量化计分表不够完善,有待更一步完善。
今后,我会努力的做到:1、加强学习,学习新课标下新的教学思想;2、学习新课标,挖掘教材,进一步把握知识点和考点;3、多听课,学习同科目教师先进的教学方法的教学理念;

㈡ 小学数学知识归纳总结

常用的数量关系式
1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、加数+加数=和 和-一个加数=另一个加数
7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数×因数=积 积÷一个因数=另一个因数
9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式 1、正方形 (C:周长 S:面积 a:边长 )
周长=边长×4 C=4a 面积=边长×边长 S=a×a 2、正方体 (V:体积 a:棱长 )
表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3、长方形( C:周长 S:面积 a:边长 )
周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh
5、三角形 (s:面积 a:底 h:高)
面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6、平行四边形 (s:面积 a:底 h:高) 面积=底×高 s=ah
7、梯形 (s:面积 a:上底 b:下底 h:高) 面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圆形 (S:面积 C:周长 л d=直径 r=半径)
(1)周长=直径×л=2×л×半径 C=лd=2лr (2)面积=半径×半径×л
9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长) (1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径) 体积=底面积×高÷3
11、总数÷总份数=平均数
12、和差问题的公式:(和+差)÷2=大数 (和-差)÷2=小数
13、和倍问题: 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
14、差倍问题: 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)

小学各年级课件教案习题汇总一年级二年级三年级四年级五年级

15、相遇问题
相遇路程=速度和×相遇时间; 相遇时间=相遇路程÷速度和; 速度和=相遇路程÷相遇时间 16、浓度问题
溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 17、利润与折扣问题
利润=售出价-成本; 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比; 利息=本金×利率×时间; 税后利息=本金×利率×时间×(1-20%)
常用单位换算 长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面积单位换算:
1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算:
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升
重量单位换算: 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算: 1元=10角 1角=10分 1元=100分 时间单位换算:
1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时
1时=60分 1分=60秒 1时=3600秒
基本概念
第一章 数和数的运算 一 概念 (一)整数
1 整数的意义: 自然数和0都是整数。 2 自然数:
我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。 3计数单位
一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。 每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

4 数位: 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除
整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。 一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。 一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。 一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。
一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如把28分解质因数
几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。 公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况: 1和任何自然数互质。 相邻的两个自然数互质。

两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。 如果两个数是互质数,它们的最大公约数就是1。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……
3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。 如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。 几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。 (二)小数 1 小数的意义
把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几…… 一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。 在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。 2小数的分类
纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。
带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。 有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 ……
无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏
循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 …… 0.5656 ……
混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 ……
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作 0.5302302 …… 简写作 。 (三)分数 1 分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。 把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。 2 分数的分类
真分数:分子比分母小的分数叫做真分数。真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。 3 约分和通分
把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。 分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。 (四)百分数
1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。 运算定律
1. 加法交换律:
两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。 2. 加法结合律:
三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。 3. 乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。 4. 乘法结合律:
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。 5. 乘法分配律:
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。 6. 减法的性质:
从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即 a-b-c=a-(b+c) 请采纳,谢谢

㈢ 总结小学数学知识体系

数与代数 实践与综合运用 空间与图形 统计与概率
数的认识 数的运算 常见的量 式与方程 探索规律 图形的认识 测 量 图形和变换 图形与位置 数据统计初步 不确定现象 可能性
一上 10以内数的认识 10以内数的加减法 认识钟表 (分类) 数学乐园 认识立体图形 条形统计图雏形
11-20各数的认识 20以内的进位加法 (整时与半时) 我们的校园 认识平面图形
一下 100以内数的认识 20以内退位减法 元\角\分 找规律 摆一摆,想一想 图形的拼组 以一当一统计图
100以内加减法一 时与分 (图形和数) 小小商店 长\正方形特点
二上 100以内加减法二 数学广角 我长高了 不同方向看物 米和厘米的认识 以一当二统计图
乘法含义及表内乘 (排列\组合) 看一看,摆一摆 角的初步认识
二下 1000以内数认识 除法含义及表内除 克和千克认识 (解决问题) 找规律 剪一剪 锐角与钝角 平移与旋转 复式统计表
万以内数的认识 万以内加减法(一) (周期与递增) 有多重 以一当五统计图
三上 分数的初步认识 万以内加减法(二) 吨的认识 数学广角 填一填,说一说 四边形的认识 周长的含义及计算 可能与一定 可能性大小
有余数的除法 秒的认识 毫米\分米的认识
多位数乘一位数 时间的计算 (排列\组合) 掷一掷 千米的认识
三下 小数的初步认识 除数是一位数除法 年 月 日 (解决问题) 数学广角 制作年历 面积的含义 用八个方位词描述物体方向 简单数据分析
两位数乘两位数 24时记时法 (集合) 长\正方形面积计算 简单路线图
小数的简单加减 (等量代换) 设计校园 平均数
四上 亿以内的数 用计算器计算 数学广角 1亿有多大 直线\射线\角 角的度量 复式条形统计图
比亿大的数 三位数乘两位数 垂直与平行 画角
除数是两位数除法 (统筹原理) 你寄过贺卡吗 四边形与梯形
四下 小数的意义和性质 四则运算 数学广角 营养午餐 三角形的分类 根据方向和距离确定位置 单式折线统计图
运算定律与简便算 三角形的性质
小数的加减法 (植树问题) 小管家 图形的拼组
五上 小数乘\除法 用字母表示数 数学广角 量一量 找规律 观察物体 平行四边形面积 公平性
积\商近似数 (正\左\上面) 三角形面积
计算器探索规律 梯形面积
解决问题 解简易方程 (编码) 铺一铺 组合图形面积
五下 因数和倍数 同分母加减法 数学广角 粉刷围墙 认识长\正方体 体\容积意义 轴对称 众 数
2\5\3的倍数特征 异分母加减法 长\正方体表面积
质数和合数 分数加减混合运算 长\正方体体积 旋转90度 复式折线统计图
分数的意义和性质 (称找次品) 打电话
约分(最大公因数) 欣赏设计
通分(最小公倍数)
六上 百分数意义 分数乘\除法 数学广角 确定起跑线 圆的认识 圆的周长计算 用数对定位置 扇形统计图
百\分\小数互化 分\小数混合运算
解决问题
比和比的运用 (鸡兔同笼) 合理存款 圆的面积计算
六下 负数的认识 比例的意义和性质 数学广角 自行车里的数学 圆柱的认识 圆柱的表面积 扇形统计图分析
完整的数轴 正\反比例的意义
数的大小比较 比例的应用 (抽屉原理) 节约用水 圆锥的认识 圆柱体积计算 折线统计图分析
(图形放大与缩小) 圆柱的展开图 圆锥体积计算

㈣ 小学生数学总结怎么写

在学习数学的过程中,一定会遇到各种各样的公式、定理和规律,这些都是前人毕生心血总结出来的,是人类智慧的结晶,为我们的学习指明了光明的道路。但我们也应该认识到一点:这些仅仅只是大的轮廓,其中所容纳的空间是十分空旷的。前人的路需要我们不断地开拓,不断地完善,然而这一切又一切的实现要靠敢于"创新"的自我。
1.思考:思考是数学学习方法的核心。在学这门课中,思考有重大意义。解数学题时,首先要观察、分析、思考。思考往往能发现题目的特点,找出解题的突破口、简便的解题方法
2.动手试一试:动手有助于消化学习过的知识,做到融会贯通。 27
3.培养创造精神:所谓创造,就是想出新办法,做出新成绩,建立新理论。
4.博观约取,由博返约。在学习过程中,除了认真研究课本外,还要阅读有关的课外资料,来扩大知识领域。同时在广泛阅读的基础上,进行认真研究。掌握其知识结构。
5.既有模仿,又有创新。模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有的框框,不囿于现成的模式。
6.及时复习,增强记忆。课堂上学习的内容,必须当天消化,要先复习,后做练习。
7.总结学习经验,评价学习效果。学习中的总结和评价,是学习的继续和提高,它有利于知识体系的建立、解题规律的掌握、学习方法和态度的调整和评判能力的提高。在学习过程中,应注意总结听课、阅读和解题中的收获和体会。

㈤ 小学数学知识点总结(全部)

对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?

由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.

㈥ 小学数学知识点有哪些

数学作为一门具有很强逻辑性和连续性的学科,是每个小学生都应该掌握的基础知识.小学数学重点是基础知识的掌握基和学习,学习数学的标准就是能够对该学籍范围内的题目进行正确的解答.考察公式概念是小学数学重点要掌握的知识,下面这几个学习方法带你学好数学.

(同学们开讲)

学习小学数学重点就是注重学习的方法,但是也需要学生有坚持不懈的精神.勤学多问不耻下问是学习的良好态度,他们会把你带到一个更高的层次,掌握好学习方法,你会对每一天的新知识充满兴趣.

㈦ 小学数学知识的相关基础理论知识有哪些

小学数学学习概述
数学学习主要是对学生数学思维能力的培养。这要以数学基础知识和基本技能为基础,以数学问题为诱因,以数学思想方法为核心,以数学活动为主线,遵循数学的内在规律和学生的思维规律开展教学。

学习类型分析
1.方式性分类
(1)接受学习与发现学习
定义:将学习的内容以定论的形式呈现给学习者的学习方式。
模式:呈现材料—讲解分析—理解领会—反馈巩固
(2)发现学习
定义:向学习者提供一定的背景材料,由学习者独立操作而习得知识的学习方式。
模式:呈现材料—假设尝试—认知整合—反馈巩固。
2.知识性分类一
(1)知识学习 定义:以理解、掌握数学基础知识为主的学习活动。过程:选择—领会—习得——巩固
(2)技能学习
定义:将一连串(内部或外部的)动作经练习而形成熟练的、自动化的反应过程。
过程:演示—模仿—练习—熟练—自动化
(3)问题解决学习
以关心问题解决过程为主、反思问题解决思考过程的一种数学学习活动。
提出问题—分析问题—解决问题—反思过程
3.知识性分类二
(1)概念性(陈述性)知识的学习
把数学中的概念、定义、公式、法则、原理、定律、规则等都称为概念性知识。
概念学习:同化与形成。
利用已有概念来学习相关新概念的方式,称概念同化;依靠直接经验,从大量的具体例子出发,概括出新概念的本质属性的方式,称为概念形成。概念形成是小学生获得数学概念的主要形式。
(2)技能性(程序性)知识的学习
小学数学技能主要是运算技能。 运算技能的形成分为三个阶段:
①认知阶段:“引导式”的尝试错误。从老师演算例题或自学法则中初步了解运算法则,在头脑中形成运算方法的表征。②联结阶段:法则阶段,即按法则一步步地运算,保证算对(使用法则解决问题,陈述性知识提供了基本的操作线索)—程序化阶段(将相关的小法则整合为整体的法则系统,此时概念性知识已退出),能算得比较快速正确。③自动化阶段:更清楚更熟练地应用第二阶段中的程序,通过较多的练习,不再思考程序,达到一定程序的自动化,获得了运算的速度和较高的正确率。
(3)问题解决(策略性知识)的学习
通过重组所掌握的数学知识,找出解决当前问题的适用策略和方法,从而获得解决问题的策略的学习。
小学生解决问题的主要方式,一是尝试错误式(又称试误法),即通过进行无定向的尝试,纠正暂时性
尝试错误,直至解决问题;二是顿悟式(也称启发式),好像答案或方法是突然出现的,而实际上是有一
定的“心向”作基础的,这就是问题解决所依据的规则、原理的评价和识别。
4.任务性分类
(1)记忆操作类学习
如口算、尺规作(画)图和掌握基本的运算法则并能进行准确计算等。
(2)理解性的学习
如认识并掌握概念的内涵、懂得数学原理并能用于解释或说明、理解一个数学命题并能用于推得新命题。
(3)探索性的学习
如需要让学生经过自己探索,发现并提出问题或学习任务,让学生通过自己的探究能总结出一个数学规律或规则,让学生通过自己的探究过程而逐步形成新的策略性知识等。
小学生数学认知学习
一、小学生数学认知学习的基本特征
1.生活常识是小学生数学认知的起点
要在儿童的生活常识和数学知识之间构建一座桥梁,让儿童从生活常识和经验出发,不断通过尝试、探索和反思,从而达到“普通常识”的“数学化”。
2.小学生数学认知是一个主体的数学活动过程
数学认知过程要成为一个“做数学”的过程,让儿童从生活常识出发,在“做数学”的过程中,去发现、了解、体验和掌握数学,去认识数学的价值、了解数学的特性、总结数学的规律,去学会用数学、提高数学修养、发展数学能力。
3.小学生数学认知思维具有直观化的特征
由于一方面儿童生活常识是其数学认知的基础,另一方面儿童思维是以直观具体形象思维为主,所以要以直观为主要手段,让儿童理解并构建起数学认知结构。
4.小学生数学认知是一个“再发现”和“再创造”的过程
小学生的数学学习,主要的不是被动的接受学习,而是主动的“再发现”和“再创造”学习的过程。要让他们在数学活动或是实践中去重新发现或重新创造数学的概念、命题、法则、方法和原理。
二、小学生数学认知发展的基本规律
1.小学生数学概念的发展
(1)从获得并建立初级概念为主发展到逐步理解并建立二级概念
(2)从认识概念的自身属性逐步发展到理解概念间的关系
(3)数学概念的建立受经验的干扰逐渐减弱
2.小学生数学技能的发展
(1)从依赖结构完满的示范导向发展到依赖对内部意义的理解
(2)从外部的展开的思维发展到内部的压缩的思维
(3)数感和符号意识的逐步提高,支持着运算向灵活性、简洁性和多样性发展
3.小学生空间知觉能力的发展
(1)方位感是逐步建立的
(2)空间概念的建立逐渐从外显特征的把握发展到对本质特征的把握
(3)空间透视能力是逐步增强的
4.小学生数学问题解决能力的发展
(1)语言表述阶段 (2)理解结构阶段 (3)多级推理能力的形成 (4)符号运算阶段
小学生数学能力的培养
一、数学能力概述
1.能力概述 能力是指个体能胜任某种活动所具有的心理特征
2.数学能力 数学能力是顺利完成数学活动所具备的,且直接影响其活动效率的一种个性心理特征
(1)运算能力:数据运算、逻辑运算和操作运算
(2)空间想象力:依据实物建立模型、依据模型还原实物、依据模型抽象出特征、大小和位置关系、模型或实物进行分解与组合等能力
(3)数学观察能力:对象的概括化、知觉的形式化、对空间结构的知觉和逻辑模式的识别等能力
(4)数学记忆能力:对概括化、形式化的符号、命题、性质及空间结构、逻辑模式等识记与再现的能力
(5)数学思维能力:对已有数学信息运用数学推理的思考方式进行思维的能力。
二、儿童数学思维能力的差异性
1.产生差异的原因 (1)多元智力理论 (2)思维类型不同
2.对待差异的态度 (1)求同存异 (2)扬长避短
三、数学能力的培养
1.培养学生的数学学习兴趣
(1)从学生生活经验着手 (2)从建立问题情境开始 (3)让学生在“做数学”中学
2.培养基本的数学能力
(1)数学操作能力动手操作既能吸引学生的注意力,又易于激发学生的思维和想象,从而调动学习积极性,培养学习兴趣,使学生主动获得知识。
在操作中,学生既“玩”了,又“学”了,也 “想”了,思维能力得到提高,学习兴趣得到培养,书本知识得到理解和消化。
2.数学语言能力
在学生动手操作活动中,还要求学生通过语言表达,对数学概念逐步建立起清晰而深刻的表象,进而自觉而巩固地掌握数学知识。
学生在表达数学时,要求语言简洁,运用数学术语准确。严谨的数学态度,需要严谨的数学语言相伴。
3.问题解决能力
发现、提出、分析、解决数学问题的能力, 是最重要的也是最终数学能力的表现。
(1)创设问题情境,培养问题意识
有目的、有意识地创设问题情境,设障立疑,造成学生对新学知识感到有问题可想,有矛盾可解决的情境,让学生处于“心求通而不能,口欲言而未得”。
(2)主动探索,增强学生的主体意识
①对问题进行大胆猜想、尝试解题
从生活经验出发提出猜想 ,从已有知识经验基础上提出猜想。
②通过各种形式交流猜想,选择更优方案
(3)拓展变化,增强学生的应用意识
强调数学应用,不全是回到测量、制图、会计等教学活动,而是培养一种应用数学知识和思想方法解决问题的欲望和方式
(4)运用所学知识,解决数学问题
生活中的数学问题很多,在教学中引导学生把生活中的问题抽象为数学问题,这样既可以加深学生对所学知识的理解,又有助于提高解决问题的能力。如房屋装修粉刷面积,铺地用多少块砖,种植面积与棵数,车轮为什么制成圆形等。
小学数学课堂教学过程
一、小学数学教学过程的主要矛盾
1.数学教与学的矛盾
教师是主导位,学生是主体。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
2.小学生的认知特点与数学学科知识间的矛盾
数学的抽象性与小学生认知的具体形象性之间,数学的严密性与小学生认知的简单化、直观化之间,数学应用的广泛性与小学生知识面窄、接触实际生活少之间,都会产生矛盾。
3.小学生认知结构发展水平与教师传授的
数学知识之间的矛盾 首先,教师对数学知识的传授与学生对数学知识的理解、掌握之间就有矛盾。其次,教师的数学语言表达与学生对它的理解之间的矛盾。再次,小学生掌握的新知识与旧有知识的矛盾。
二、小学数学教学过程
1.小学数学教学过程是师生交往与互动的过程
交往的基本属性是互动性和互惠性,交往的基本方式是对话和参与。对小学生而言,交往为他们心态的开放,主体性的凸现,创造性的解放提供了空间;对教师而言,课堂上的交往是与学生共同分享对数学的理解、共同感受学习的快乐。小学数学家教学过程是师生间、学生间的平等对话、交流的过程,这种对话、交流的内容,包括数学知识、技能的信息和情感、态度、态度价值观等各个方面的信息。师生正是通过这种对话和交流来实现课堂中的师生之间的互动的。
有效的交往互动要注意以下两个方面:
(1) 要充分调动小学生的主动性、积极性
数学教学过程对数学内容进行探索、实践与思考的学习过程,学生是学习活动的主体。教师只有引导学生开展观察、操作、比较、猜想、推理、交流等多种形式的活动,才能促使学生建构自己对数学的理解,进行掌握数学知识和技能,逐步学会从数学的角度观察事物,思考问题,产生学习数学的兴趣与愿望。
(2)要实现教师角色的转变
教师的主导作用可在以下活动中得到体现。
①调动学生的学习积极性,激发学生的学习动机,引导学生积极主动地投入到学习活动中去。 ②了解学生的想法,有针对性地引导,帮助学生解决学习困难;同时鼓励不同的观点,参与学生的讨论,评估学习,作出调整。 ③为学生的学习创设一个良好的课堂环境和精神氛围,引导学生开展积极主动的数学活动。
2.小学数学教学过程是老师引导学生开展数学活动的过程
(1)组织和引导学生经历“数学化”的过程
学生数学学习应当成为“数学化”的过程。即学生从具体情境出发,经过归纳、抽象和概括等思维活动,寻找数学模型,得出数学结论的过程。教师要善于引导学生把生活经验上升到数学知识和方法。
(2)师生共同生成与建构数学知识的过程
在学校学习的情境下,教师对于指导学生进行数学知识的建构具有重要的引导和指导作用,教师要注重引导学生有效地建构数学知识,在数学课堂教学过程中“生成”知识与方法。这种“生成”的过程正是通过师生双方交互作用、教师的外因促使学生的内因而完成的。
(3)在活动中体验数学,获得数学发展的过程
小学数学教学过程应成为师生共同参与的活动过程。在这一过程中,教师为学生设计和提供有意义的情境,组织学生共同进行操作、交流、思考等活动。要给学生提供相对充分的时间和空间,让学生获得自主探索动手实践的机会,从现实问题出发学习数学知识的机会,从相关学科和已有知识提出数学问题的机会,对数学内部的规律和原理进行探索和研究的机会。
3.小学数学教学过程是师生共同发展的过程
(1)促进学生的发展 小学数学教学的基本目的是促进学生的发展,为小学生终身发展奠定基础。学生应该在数学知识与技能、数学思考、解决问题和情感态度价值观等四个方面得到发展。这四个方面应交织、渗透,密不可分,形成一个整体。
(2)促进教师的专业成长优秀教师都是在教学实践中成长起来的。 良好的知识结构、能力结构,专业领引,同行间的切磋、交流,不断的自我反思,是优秀教师成长的关键因素。教师的专业能力包括教学设计、教学实施和教学反思等能力。教学过程必须遵循教育规律和儿童身心发展的规律,还要教师有创造性地解决师生、生生间的认知、情感和价值观的冲突的能力,形成独具个人魅力的教学风格,教学是一个富有个性化的创造过程。

㈧ 小学数学的知识点总结

常用的数量关系式
1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、加数+加数=和 和-一个加数=另一个加数
7、被减数-减数=差 被减数-差=减数 差+减数=被减数
8、因数×因数=积 积÷一个因数=另一个因数
9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数

小学数学图形计算公式
1、正方形 (C:周长 S:面积 a:边长 )
周长=边长×4 C=4a 面积=边长×边长 S=a×a
2、正方体 (V:体积 a:棱长 )
表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3、长方形( C:周长 S:面积 a:边长 )
周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab
4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh
5、三角形 (s:面积 a:底 h:高)
面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6、平行四边形 (s:面积 a:底 h:高)
面积=底×高 s=ah
7、梯形 (s:面积 a:上底 b:下底 h:高)
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圆形 (S:面积 C:周长 л d=直径 r=半径)
(1)周长=直径×л=2×л×半径 C=лd=2лr (2)面积=半径×半径×л
9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)
(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2
(3)体积=底面积×高 (4)体积=侧面积÷2×半径
10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径)
体积=底面积×高÷3
11、总数÷总份数=平均数
12、和差问题的公式:(和+差)÷2=大数 (和-差)÷2=小数
13、和倍问题: 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
14、差倍问题: 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
15、相遇问题
相遇路程=速度和×相遇时间; 相遇时间=相遇路程÷速度和; 速度和=相遇路程÷相遇时间
16、浓度问题
溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量
17、利润与折扣问题
利润=售出价-成本; 利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比; 利息=本金×利率×时间; 税后利息=本金×利率×时间×(1-20%)

常用单位换算
长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面积单位换算:
1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
体(容)积单位换算:
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量单位换算: 1吨=1000 千克 1千克=1000克 1千克=1公斤
人民币单位换算: 1元=10角 1角=10分 1元=100分
时间单位换算:
1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时
1时=60分 1分=60秒 1时=3600秒

基本概念
第一章 数和数的运算
一 概念
(一)整数
1 整数的意义: 自然数和0都是整数。
2 自然数:
我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。0也是自然数。
3计数单位
一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4 数位: 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除
整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。
一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如把28分解质因数
几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。
公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是1。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……
3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数
1 小数的意义
把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2小数的分类
纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。
带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。
有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 ……
无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏
循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 …… 0.5656 ……
混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 ……
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作 0.5302302 …… 简写作 。
(三)分数
1 分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2 分数的分类
真分数:分子比分母小的分数叫做真分数。真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3 约分和通分
把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数
1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。
运算定律
1. 加法交换律:
两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2. 加法结合律:
三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3. 乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4. 乘法结合律:
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
5. 乘法分配律:
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。
6. 减法的性质:
从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。