当前位置:首页 » 基础知识 » 辽宁小学数学五年级常考知识点
扩展阅读
郑源唱过哪些经典的歌曲 2024-11-08 04:18:53

辽宁小学数学五年级常考知识点

发布时间: 2022-07-16 01:05:11

① 小学数学五年级位置知识点总结

1,横排叫做行,竖排叫做列。确定第几列一般是从左往右数,确定第几行一般是从前往后数。

2,用有顺序的两个数表示出一个确定的位置就是数对,确定一个物体的位置需要两个数据。

3,用数对表示位置时,先表示第几列,再表示第几行,不要把列和行弄颠倒。

4,写数对时,用括号把列数和行数括起来,并在列数和行数之间写个逗号把它们隔开,写作:(列,行)。

5,数对的读法:(2,3)可以直接读(2,3),也可以读作数对(2,3)。

6,一组数对只能表示一个位置。

7,表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。

延伸简介:

1,数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。

2,作用:一组数对确定唯一一个点的位置,经度和纬度就是这个原理。 例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

3,在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

4,数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线,(有一个数不确定,不能确定一个点)。

② 小学五年级数学学习重点有哪些

数学作为一门具有很强逻辑性和连续性的学科,是每个小学生都应该掌握的基础知识.小学数学重点是基础知识的掌握基和学习,学习数学的标准就是能够对该学籍范围内的题目进行正确的解答.考察公式概念是小学数学重点要掌握的知识,下面这几个学习方法带你学好数学.

(同学们开讲)

学习小学数学重点就是注重学习的方法,但是也需要学生有坚持不懈的精神.勤学多问不耻下问是学习的良好态度,他们会把你带到一个更高的层次,掌握好学习方法,你会对每一天的新知识充满兴趣.

③ 小学五年级数学知识

方程是重点吧,解不要忘。分数的应用。不知道有没有长方体立方体的表面积还有体积。给你个图,是否能拼成正方体。百分数应用。长方体正方体的棱长扩大几倍后,表面积扩大几倍,体积扩大几倍。素数、合数(质数)。最大公因数最小公倍数,会在填空题里给你两个分解速因数的式子,让你写他们的最大公因数最小公倍。分子分母扩大。两样东西同时卖出,一个亏了,一个盈利,最后亏还是盈利,亏或盈利了多少元?取几个数的平均数、众数、中位数。银行的利息。一样东西便宜(贵)了多少钱,便宜(贵)了百分之几。能被2、3、5整除的数。通分、约分。分数的大小比较。小数的乘除。

恩恩,大概就这些 如有漏洞,不要介意啊,这些差不多都是重点吧,特别是那个立方体长方体的扩大,我以前也老错呢……若有其他小学数学英语上的困难(奥数你就饶了我吧),基本上都能帮你解决。

④ 小学数学五年级的知识点有哪些

五年级第一学期数学概念综合

1、0既不是正数,也不是负数。正数都大于0,负数都小于0。通常情况下正、负数表示两种相反关系的量,如果盈利用正数表示,那么亏损就用负数,如果高于海平面用正数表示,那么低于海平面用负数表示。水沸腾的温度是100℃,水结冰的温度是0℃。
2、在数不规则图形的面积时不满一格的看作半格。先数满格,再数半格。
3、长方形的周长=(长+宽)×2 长方形的面积=长×宽
正方形的周长=边长×4 正方形的面积=边长×边长
4、沿着平行四边形的任意一条高剪开,然后通过移动拼成一个长方形。长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高。因为长方形的面积=长×宽,所以平行四边形的面积=底×高,用字母表示S=a×h。
5、将两个完全一样的三角形拼成一个平行四边形,这个平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,拼成的平行四边形的面积是每个三角形面积的2倍,每个三角形的面积是拼成的平行四边形面积的一半。因为平行四边形的面积等于底×高,所以三角形的面积等于底×高÷2。用字母表示S=a×h÷2。 等底等高的两个三角形的面积相等。
6、在平行四边形里画一个最大的三角形,这个三角形的面积等于这个平行四边形面积的一半。
用细木条钉成一个长方形框架,如果把他拉成一个平行四边形,则它的周长不变,面积变小了,因为底不变,高变小了;
如果将平行四边形框架拉成一个长方形,则他们的周长不变,面积变大了。
7、将两个完全一样的梯形拼成一个平行四边形,这个平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形的高,拼成的平行四边形的面积是每个梯形面积的2倍,每个梯形的面积是拼成的平行四边形面积的一半。因为平行四边形的面积=底×高,所以梯形的面积=(上底+下底)×高÷2字母表示S=(a+b)×h÷2.
8、分母是10、100、1000……的分数都可以用小数表示。
分母是10的分数写成一位小数,表示十分之几。
分母是100的分数写成两位小数,表示百分之几。
分母是1000的分数写成三位小数,表示千分之几。
小数点左边第一位是个位,计数单位个(1)
小数点左边第二位是十位,计数单位十(10)
小数点右边第一位是十分位,计数单位十分之一(0.1)
小数点右边第二位是百分位,计数单位百分之一(0.01)
小数点右边第三位是千分位,计数单位千分之一(0.001)
小数部分最高位是十分位,最大的计数单位是十分之一。相邻两个计数单位之间的进率是10。
9、1里面有(10)个0.1(十分之一) ,0.1(十分之一)里面有10个0.01(百分之一)0.01(百分之一)里面有10个0.001(千分之一),1里面有100个0.01。
10、小数的性质:在小数的末尾添上“0”或去掉“0”,小数的大小不变。
11、用“万”作单位:1、在万位后面点上小数点;2、添个“万”字。用“=”号。用“亿”作单位:1、在亿位后面点上小数点;2、添个“亿”字。用“=”号。注意:改写不能改变原数的大小。
省略万后面的尾数:要看“千”位,用四舍五入法取近似值。用“≈”号。省略亿后面的尾数:要看“千万”位,用四舍五入法取近似值。用“≈”号。
保留整数,就是精确到个位,要看小数部分第一位(十分位)。
保留一位小数,就是精确到十分位,要看小数部分第二位(百分位)。
保留两位小数,就是精确到百分位,要看小数部分第三位(千分位)。
注意:在表示近似值时末尾的“0”一定不能去掉。
例如,一个小数保留两位小数是1、50,末尾的“0”不能去掉。虽然1、50与1.5大小相等,但表示的精确程度不一样,1.50表示精确到百分位,而1.5表示精确到十分位,所以1.50在表示近似数时末尾的“0”一定不能去掉。
12、计算小数加减法时,要把小数点对齐,也就是相同数位对齐。
13、找规律:1、找到周期;2、将个数÷周期;3、余数是几就是第几个。4、要算每个项目一共有几个,可以分三步去做:(1)每几个为一组;(2)每组中有几个;再乘一共有组数(3)最后加上余数中的个数就等于一共有多少个。
14、解决问题中的策略:用一一列举法将可能的情况用列表法全部列举出来,列举时的技巧是先考虑数字较大的(放在第一行)。
15、在计算小数乘法时(1)算:按照整数乘法的法则进行计算;(2)看:两个因数中一共有几位小数(3)数:就从积的末尾起数出几位;(4)点:点上小数点;(5)去:去掉小数末尾的0。
16、一个小数乘10、100、1000……只要把小数点向右移动一位、两位、三位……
一个小数除以10、100、1000……只要把小数点向左移动一位、两位、三位……
17、1平方千米就是边长1000米的正方形的面积,等于1000000平方米。1公顷就是边长100米的正方形的面积,等于10000平方米。 1平方千米=100公顷。1公顷=100公亩=10000平方米
18、整数加、减、乘、除法的运算定律对于小数也同样适用。
加法交换律:a+b=b+a 加法结合律:(a+b)+c= a +(b+c)
乘法交换律:a×b=b×a 加法结合律:(a×b)×c= a ×(b×c)
减法的性质:a―b―c = a―(b+c)
除法的性质:a÷b÷c = a÷(b×c)
19、除数是小数的除法,首先看除数一共有几位小数,然后就根据商不变的规律,将被除数和除数同时扩大,使之变为除数是整数的除法,重点是将商的小数点和现在被除数的小数点对齐,除不尽的添“0”继续除(一下子只能添一个0),哪一位不够商1就在那一位上商0。
20、当一个因数不为0时,另一个因数大于(小于)1,积就大于(小于)第一个因数。(一个因数乘一个大于1的数,积会越乘越大;乘一个小于1的数,积会越乘越小。)
A×(>1)(>)A A×(<1)(<)A
当被除数不为0时,除数大于(小于)1,商反而小于(大于)被除数。(除以一个大于1的数,商反而越除越小;除以一个小于1的数,商反而越除越大。)
21、质量单位:
1吨=1000千克, 1千克=1000克,
长度单位:
1千米=1000米 1米=10分米=100厘米=1000毫米
容积单位:
1升=1000毫升
面积单位:
1平方千米=100公顷 1公顷=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米

⑤ 数学五年级上册人教版知识点归纳 15条

小学五年级数学上册复习知识点归纳总结
第一单元小数乘法
1.小数乘法计算方法:按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
2、一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。
3、求近似数的方法一般有三种:
⑴四舍五入法 (常用) ; ⑵进一法; ⑶去尾法
4、计算钱数,保留两位小数,表示精确到分。保留一位小数,表示精确到角。
5、小数四则运算顺序跟整数四则运算顺序是一样的。
6、运算定律和性质:
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
乘法:乘法交换律:a×b=b×a
乘法结合律:三个数相乘,先把前两个数相乘,再和最后一个数相乘,或先把后两个数相乘,再和第一个数相乘,积不变. (a×b)×c=a×(b×c)
乘法分配律:两个数的和(或者差)同一个数相乘,可以先把这两个数(或者被减数与减数)分别同这个数相乘,再相加(或者再相减)。 (a+b)×c=a×c+b×c或 (a-b)×c=a×c-b×c
减法性质:从一个数里连续减去两个数,我们可以减去两个减数的和,或者交换两个减数的位置。 a-b-c=a-(b+c) a-b-c=a-c-b
除法性质:从一个数里连续除数两个数,我们可以除以两个除数的积,或者交换两个除数的位置。a÷b÷c=a÷(b×c) a÷b÷c=a÷c÷b
去括号: 括号前是加号的,去掉括号后,括号内的符号不变号;括号前是减号的,去掉括号后,括号内的符号要变号。
a+(b-c)=a+b-c a-(b-c)=a-b+c
第二单元小数除法
9、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
10、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数(把小数点向右移动相同的位数),使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:向右移动小数点时,如果被除数的位数不够,在被除数的末尾用0补足。
12、除法中的变化规律:①商不变性质:被除数和除数同时乘或除以同一个数(0除外),商不变。②除数不变,被除数乘或除以几,商随着乘或除以几。③被除数不变,除数乘或除以几,商就除以或乘几。④被除数大于除数,商就大于1;被除数小于除数,商就小于1。⑤一个数除以大于1的数,商就小于被除数;一个数除以小于1的数,商就大于被除数。⑥积不变性质:一个因数乘一个数,另一个除以同一个数(0除外),积不变。⑦一个因数不变,另一个数乘几,积就乘几。⑧一个因数不变,另一个因数除以几,积就除以几。
13、一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。 X
一个循环小数的小数部分,依次不断重复出现的数字。(如6.321321…的循环节是321,简便记法为6.321;如0.33…的循环节是3,简便记法为0.3。)循环小数是无限小数,无限小数不一定是循环小数。
14、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。无限小数分为无限循环小数和无限不循环小数。
第三单元观察物体
15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面,最少看到一个面。圆柱体从上面看到的形状是圆形,从其他方向看到的是长形或正方形。球体无论从哪个角度看,看到的形状都是圆形。
第四单元简易方程
16、在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写。加号、减号、除号以及数与数之间的乘号不能省略。
17、a×a可以写作a•a或a ,a 读作a的平方 2a表示a+a
(1a=a这里的“1”我们不写)
18、方程:含有未知数的等式称为方程(★方程必须满足的条件:必须是等式 必须有未知数,两者缺一不可)。使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。
19、解方程原理:天平平衡
等式性质一:方程两边同时加上或减去同一个数,左右两边仍然相等。等式性质二:方程两边同时乘或除以同一个不为0数,左右两边仍然相等。
21、所有的方程都是等式,但等式不一定都是方程。
22、方程的检验过程:方程左边 = 方程右边
23、方程的解是一个数; 解方程式是一个计算过程。 所以,X=…是方程的解。
常见的等量关系:①路程=速度×时间
②工作总量=工作效率×工作时间
③总价=单价 × 数量
第五单元多边形的面积
23、长方形周长=(长+宽)×2 字母公式:C=(a+b)×2
长方形面积=长×宽 字母公式:S=ab
正方形周长=边长×4 字母公式:C=4a
正方形面积=边长×边长 字母公式:S=a2
平行四边形的面积=底×高 字母公式: S=ah
三角形的面积=底×高÷2 字母公式: S=ah÷2
(三角形的底=面积×2÷高; 三角形的高=面积×2÷底)
梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2(上底=面积×2÷高-下底,下底=面积×2÷高-上底;
高=面积×2÷(上底+下底) )
25、三角形面积公式推导: 平行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个平行四边形,
长方形的长相当于平行四边形的底;长方形的宽相当于平行四边形的高;因为长方形面积=长×宽,所以平行四边形面积=底×高,长方形的面积等于平行四边形的面积。 平行四边形的底相当于三角形的底;平行四边形的高相当于三角形的高;平行四边形的面积等于等底等高三角形面积的2倍。
27两个完全一样的梯形可以拼成一个平行四边形。
平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍。
29、长方形框架拉成平行四边形,周长不变,面积变小。
第六单元统计与可能性
31、平均数=总数量÷总份数
32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。
第七单元数学广角
33、数不仅可以用来表示数量和顺序,还可以用来编码。
34、邮政编码:由6位组成,前2位表示省(直辖市、自治区)
0 5 4 0 0 1
前3位表示邮区, 前4位表示县(市),最后2位表示投递局
35、身份证18位,如130521197803010019
13表示河北省 05表示邢台市 21表示邢台县 19780301是出生日期 001是顺序码 9校验码
倒数第二位的数字用来表示性别,单数表示男,双数表示女。

⑥ 小学五年级数学上册复习教学知识点归纳总结

第一单元小数乘法 1、小数乘整数P2、3意义——求几个相同加数的和的简便运算。 如1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。 计算方法先把小数扩大成整数按整数乘法的法则算出积再看因数中一共有几位小数就从积的右边起数出几位点上小数点。 2、小数乘小数P4、5意义——就是求这个数的几分之几是多少。 如1.5×0.8就是求1.5的十分之八是多少。 1.5×1.8就是求1.5的1.8倍是多少。 计算方法先把小数扩大成整数按整数乘法的法则算出积再看因数中一共有几位小数就从积的右边起数出几位点上小数点。 注意计算结果中小数部分末尾的0要去掉把小数化简小数部分位数不够时要用0占位。 3、规律1P9一个数0除外乘大于1的数积比原来的数大 一个数0除外乘小于1的数积比原来的数小。 4、求近似数的方法一般有三种P10 ⑴四舍五入法⑵进一法⑶去尾法 5、计算钱数保留两位小数表示计算到分。保留一位小数表示计算到角。 6、P11小数四则运算顺序跟整数是一样的。 7、运算定律和性质 加法加法交换律a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 减法减法性质a-b-c=a-(b+c) a-(b-c)=a-b+c 乘法乘法交换律a×b=b×a 乘法结合律(a×b)×c=a×(b×c) 乘法分配律(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】 除法除法性质a÷b÷c=a÷(b×c) 第二单元小数除法 8、小数除法的意义已知两个因数的积与其中的一个因数求另一个因数的运算。 如0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3求另一个因数的运算。
9、小数除以整数的计算方法P16小数除以整数按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除商0点上小数点。如果有余数要添0再除。 10、P21除数是小数的除法的计算方法先将除数和被除数扩大相同的倍数使除数变成整数再按“除数是整数的小数除法”的法则进行计算。 注意如果被除数的位数不够在被除数的末尾用0补足。 11、(P23)在实际应用中小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数求出商的近似数。 12、(P24、25)除法中的变化规律①商不变性质被除数和除数同时扩大或缩小相同的倍数0除外商不变。②除数不变被除数扩大商随着扩大。③被除数不变除数缩小商扩大。 13、(P28)循环小数一个数的小数部分从某一位起一个数字或者几个数字依次不断重复出现这样的小数叫做循环小数。 循环节一个循环小数的小数部分依次不断重复出现的数字。如6.3232„„的循环节是32. 14、小数部分的位数是有限的小数叫做有限小数。小数部分的位数是无限的小数叫做无限小数。 第三单元观察物体 15、从不同的角度观察物体看到的形状可能是不同的观察长方体或正方体时从固定位置最多能看到三个面。 第四单元简易方程 16、P45在含有字母的式子里字母中间的乘号可以记作“·”也可以省略不写。 加号、减号除号以及数与数之间的乘号不能省略。 17、a×a可以写作a·a或a a 读作a的平方。 2a表示a+a 18、方程含有未知数的等式称为方程。 使方程左右两边相等的未知数的值叫做方程的解。 求方程的解的过程叫做解方程。 19、解方程原理天平平衡。 等式左右两边同时加、减、乘、除相同的数0除外等式依然成立。 20、10个数量关系式加法和=加数+加数 一个加数=和-两一个加数 减法差=被减数-减数 被减数=差+减数 减数=被减数-差 乘法积=因数×因数 一个因数=积÷另一个因数 除法商=被除数÷除数 被除数=商×除数 除数=被除数÷商
21、所有的方程都是等式但等式不一定都是等式。 22、方程的检验过程方程左边=„„ 23、方程的解是一个数 解方程式一个计算过程。=方程右边 所以X=„是方程的解。 第五单元多边形的面积 23、公式长方形周长=(长+宽)×2——【长=周长÷2-宽宽=周长÷2-长】 字母公式C=(a+b)×2 面积=长×宽 字母公式S=ab 正方形周长=边长×4 字母公式C=4a 面积=边长×边长 字母公式S=a 平行四边形的面积=底×高 字母公式 S=ah 三角形的面积=底×高÷2 ——【底=面积×2÷高高=面积×2÷底】 字母公式 S=ah÷2 梯形的面积=上底+下底×高÷2 字母公式 S=a+bh÷2 【上底=面积×2÷高下底下底=面积×2÷高-上底 高=面积×2÷上底+下底】 24、平行四边形面积公式推导剪拼、平移 25、三角形面积公式推导旋转 平行四边形可以转化成一个长方形 两个完全一样的三角形可以拼成一个平行四边形 长方形的长相当于平行四边形的底 平行四边形的底相当于三角形的底 长方形的宽相当于平行四边形的高 平行四边形的高相当于三角形的高 长方形的面积等于平行四边形的面积 平行四边形的面积等于三角形面积的2倍 因为长方形面积=长×宽所以平行四边形面积=底×高。 因为平行四边形面积=底×高所以三角形面积=底×高÷2 26、梯形面积公式推导旋转 27、三角形、梯形的第二种推导方法老师已讲自己看书 两个完全一样的梯形可以拼成一个平行四边形 知道就行。 平行四边形的底相当于梯形的上下底之和 平行四边形的高相当于梯形的高
平行四边形面积等于梯形面积的2倍 因为平行四边形面积=底×高所以梯形面积=(上底+下底)×高÷2 28、等底等高的平行四边形面积相等等底等高的三角形面积相等 等底等高的平行四边形面积是三角形面积的2倍。 29、长方形框架拉成平行四边形周长不变面积变小。 30、组合图形转化成已学的简单图形通过加、减进行计算。 第六单元统计与可能性 31、平均数=总数量÷总份数 32、中位数的优点是不受偏大或偏小数据的影响用它代表全体数据的一般水平更合适。 第七单元数学广角 33、数不仅可以用来表示数量和顺序还可以用来编码。 34、邮政编码由6位组成前2位表示省直辖市、自治区 0 5 4 0 0 1 前3位表示邮区 前4位表示县市 最后2位表示投递局 35、身份证码 18位 1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9 河北省 邢台市 邢台县 出生日期 顺序码 校验码 倒数第二位的数字用来表示性别单数表示男双数表示女

⑦ 小学一到五年级数学知识重点汇总(详细)

小学五年级全科目课件教案习题汇总语文数学

三 单 元
有两个相对的面是正方形,长方体中相对的面完全相同;有12条棱,相对的棱长度相等;有8个顶点。
2、正方体的特征:正方体有6个面,这6个面都是正方形,所有的面完全相同;有12条棱,所有的棱长度相等;有8个顶点。 正方体可以看成是长、宽、高都相等的长方体。
3、相交于一个顶点的3条棱的长度分别叫做长方体的长、宽、高。 4、长方体或者正方体的12条棱的总长度叫做他们的棱长总和。 长方体的棱长总和=(长+宽+高)×4, 用字母可以表示为=C长方体(a+b+h)4。
正方体的棱长总和=棱长×12,用字母可以表示为=12aC正方体。 5、长方体或者正方体6个面的总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2,用字母表示为
=(ab+ah+bh)2S长方体。
正方体的表面积=棱长×棱长×6,用字母表示为2=6aS正方体。 6、物体所占空间的大小叫做物体的体积。
计量体积要用体积单位,常用的体积单元有立方厘米、立方分米、立方米,用字母表示为3cm、3dm、3m。3311000dmcm,33
11000mdm。 7、棱长是1 cm的正方体,体积是13cm。一个手指尖的体积大约是13
cm。
棱长是1 dm的正方体,体积是13dm。一个粉笔盒的体积大约是13
cm。
棱长是1 m的正方体,体积是13
m。用3根1 m长的木条,做成一个互成直角的架子架在墙角,它的体积是13
cm。
8、长方体的体积=长×宽×高,用字母表示为=abhV长方体。 正方体的体积=棱长×棱长×棱长,用字母表示为3
=aV正方体。 长方体和正方体的统一公式:支柱体的体积=底面积×高。
9、容器所能容纳物体的体积,叫做它的容积。计量容积一般就用体积单位,计量液体的体积,常用容积单位升和毫升,用字母表示是L和ml。

4
311Ldm,311mlcm,11000Lml
10、长方体或正方体容器的容积的计算方法,跟体积的计算方法相同。但是要从容器里面量出长、宽、高。
11、形状不规则的物体,求他们的体积,可以用排水法。水面上升或者下降的那部分水的体积就是物体的体积。

第 四 单 元
一、分数的意义
1、在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。
2、一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。把什么平均分,什么就是单位“1”。 3、把单位“1”平均分成若干份,表示其中的一份的数叫做分数单位。一个分数的分母越大,分数单位越小;一个分数的分母越小,分数单位越大。 4、分数与除法的关系:分数可以表示整数除法的商;除法里的被除数相当于分数中的分子,除数相当于分数里的分母,出号相当于分数线。 =
被除数被除数除数除数,=分子
分子分母分母

5、求一个数是另一个数的几分之几的解题方法:用除法计算。 =一个数一个数另一个数另一个数

在解决问题中,要先找出单位“1”和比较量,一般来说,问题中“是”或“占”的后面是单位“1”,前面的比较量,如果没出现这两个字,要根据题意判断, 再根据公式“1=
1
比较量
比较量单位“”单位“” ”计算。
6、低级单位化高级单位(用分数表示)时,等于低级单位的数值两个单位间的进率
,能约分的要约成最简分数。 二、真分数和假分数
1、分子比分母小的分数叫做真分数,真分数小于1;
分子比分母大或者分子和分母相等的分数叫做假分数,假分数大于1或等于1;
由整数部分(不包括0)和真分数合成的分数叫做带分数。
2、假分数化成整数或带分数,要用分子除以分母。当分子是分母的倍数时,

5
能化成整数;当分子不是分母的倍数时,能化成带分数,商是带分数的整数部分,余数是分数部分的分子,分母不变。
3、带分数化成假分数,用原来的分母做分母,用分母和整数的乘积再加上原来的分子作分子,用式子表示成:+=分母整数分子带分数分母

三、分数的基本性质、约分、通分
1、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。可以利用分数的基本性质,对分数进行约分或通分,或者把分母化成指定的分母或分子的分数。
2、两个数公有的因数,叫做它们的公因数。其中最大的公因数叫做它们的最大公因数。当两个数成倍数关系时,较小的数就是他们的最大公因数;当两个数只有公因数1时,它们的最大公因数就是1.(公因数只有1的两个数叫做互质数)
3、求两个数的最大公因数,可以用列举法分别列出这两个数的因数,再寻找公有的因数。也可以用短除法计算。
4、分子和分母只有公因数1的分数叫做最简分数。
把一个分数化成和它相等,但分子分母都比较小的分数叫做约分。约分时可以用分子和分母的公因数(1除外)去除,一步步来约分,也可以直接用最大公因数去除,直接约分。
5、两个数公有的倍数叫做它们的公倍数,其中最小的倍数叫做它们的最小公倍数。一般情况下,求一个数的倍数可以用列举法、图示法、大数翻倍法、短除法。当两个数是倍数关系时,大数就是它们的最小公倍数;互质的两个数的最小公倍数是它们的积。
6、把异分母分数分别化成和原来的分数相等的同分母分数,叫做通分。 四、分数和小数的互化 1、小数化分数的方法
小数化成分数时,小数部分有几位小数,就在1后面写几个“0”作分母,把原来的小数去掉小数点后作分子。小数化成分数后,能约分的要约成最简分数。
2、分数化小数的方法

6
①分母是10,100,1000„的分数化成小数,可以直接去掉分母,看分母1后面后面有几个0,就在分子中从最后一位起向左数出几位,点上小数点;分子位数不足时,用0补足,整数部分写0.
②不是以上这些特征的分数时,要用分子除以分母。除不尽的,根据“四舍五入”法保留一定的位数。
3、判断一个分数是否能化成有限小数的方法:一个最简分数,如果坟墓中只含有质因数2或5,这个分数就能化成有限小数。 4、比较几个数的大小
如果只有两个分数要比较大小:①分母相同的,分子大的分数就大;②分子相同的,分母越大的分数反而越小;③分子、分母都不相同的,要化成分母相同的分数再比较。
几个数比较大小,包含分数和小数时,一般把分数化成小数后再比较大小,最后需要比较的是原数的大小。(需要特别注意是从大到小排列时要用大于号连接;而小到大排列,用小于号连接)

第 五 单 元
1、同分母分数相加减,计算时,分母不变,只是把分子相加减。
2、计算时要注意:当计算的结果是假分数时,要化成整数或带分数;当计算的结果能约分的,一定要约成最简分数;当几个分数相减,分子等于0时,这个分数就是0.
3、任意一个自然数(1除外)作为分母的所有最简真分数的和,等于最简真分数的个数除以2.
4、计算异分母分数加减法,因为分母不同,就意味着分数单位不同,不能直接相加减。根据分数的基本性质,先进行通分,然后再按照同分母的分数加减法的计算法则进行计算。
5、分数加减混合运算的运算顺序和整数加减混合运算的顺序相同,即从左到右依次计算,有括号的要先算括号里面的。整数加法的交换律、结合律、减法的性质对于分数加减法仍然适用。

第六 单元 1、在一组数据中,出现次数最多的数就是这组数据的众数,众数能够反映一组数据的集中程度。
2、在一组数据中,众数可能不止一个,也可能没有众数。

⑧ 小学五年级数学基本知识概括

乘法口诀表背吧!