当前位置:首页 » 基础知识 » 刚上高一数学的基础知识人教版
扩展阅读
日本动漫大部分在哪里看 2024-11-08 05:30:59
教育界的园区是哪里 2024-11-08 05:25:05

刚上高一数学的基础知识人教版

发布时间: 2022-07-15 15:59:15

㈠ 人教版高一数学知识点的详细整理

我有相关资料,10元。要的话请留QQ

㈡ 总结高中数学知识点(人教版)

.集合、简易逻辑
理解集合、子集、补集、交集、并集的概念;

了解空集和全集的意义;

了解属于、包含、相等关系的意义;

掌握有关的术语和符号,并会用它们正确表示一些简单的集合。

理解逻辑联结词"或"、"且"、"非"的含义;

理解四种命题及其相互关系;掌握充要条件的意义。

2.函数

了解映射的概念,在此基础上加深对函数概念的理解。

了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法。

了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数。

理解分数指数的概念,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质。

理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图象和性质。

能够运用函数的性质、指数函数、对数函数的性质解决某些简单的实际问题。

3.不等式

理解不等式的性质及其证明。

掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。

掌握分析法、综合法、比较法证明简单的不等式。

掌握二次不等式,简单的绝对值不等式和简单的分式不等式的解法。

理解不等式:|a|-|b|≤|a+b|≤|a|+|b|。

4.三角函数(46课时)

理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。

掌握任意角的正弦、余弦、正切的定义,

并会利用单位圆中的三角函数线表示正弦、余弦和正切。

了解任意角的余切、正割、余割的定义;

掌握同角三角函数的基本关系式:

掌握正弦、余弦的诱导公式。

掌握两角和与两角差的正弦、余弦、正切公式;

掌握二倍角的正弦、余弦、正切公式;通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力。

能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明(包括引出积化和差、和差化积、半角公式,但不要求记忆)。

了解周期函数与最小正周期的意义;

了解奇偶函数的意义;并通过它们的图象理解正弦函数、余弦函数、正切函数的性质;以及简化这些函数图象的绘制过程;

会用"五点法"画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义。

会由已知三角函数值求角,并会用符号 arcsin x、arccos x、arctan x表示。

掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的计算问题。

5.平面向量

理解向量的概念,掌握向量的几何表示,

了解共线向量的概念。

掌握向量的加法与减法。

掌握实数与向量的积,理解两个向量共线的充要条件。

了解平面向量的基本定理,

理解平面向量的坐标的概念,

掌握平面向量的坐标运算。

掌握平面向量的数量积及其几何意义,

了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。

掌握平面两点间的距离公式,

掌握线段的定比分点和中点坐标公式,并且能熟练运用;

掌握平移公式。

6.数列

理解数列的概念,

了解数列通项公式的意义;

了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。

理解等差数列的概念,

掌握等差数列的通项公式与前 n 项和公式,并能解决简单的实际问题。

理解等比数列的概念

掌握等比数列的通项公式与前 n 项和公式,并能解决简单的实际问题。

7.直线和圆的方程

理解直线的倾斜角和斜率的概念,

掌握过两点的直线的斜率公式,

掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程。

掌握两条直线平行与垂直的条件,

掌握两条直线所成的角和点到直线的距离公式;

能够根据直线的方程判断两条直线的位置关系。

会用二元一次不等式表示平面区域。

了解简单的线性规划问题,了解线性规划的意义,并会简单应用。

掌握圆的标准方程和一般方程,

了解参数方程的概念,理解圆的参数方程。

8.圆锥曲线方程

掌握椭圆的定义、标准方程和椭圆的简单几何性质;

理解椭圆的参数方程。

掌握双曲线的定义、标准方程和双曲线的简单几何性质。

掌握抛物线的定义、标准方程和抛物线的简单几何性质。

9.直线、平面、简单几何体

掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;

能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。

掌握两条直线平行与垂直的判定定理和性质定理;

掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会利用给出的公垂线计算距离)。

掌握直线和平面平行的判定定理和性质定理;

掌握直线和平面垂直的判定定理和性质定理;

掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念;

了解三垂线定理及其逆定理。

掌握两个平面平行的判定定理和性质定理;

掌握二面角、二面角的平面角、两个平行平面间的距离的概念;

掌握两个平面垂直的判定定理和性质定理。

进一步熟悉反证法,会用反证法证明简单的问题。

了解多面体的概念,了解凸多面体的概念。

了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。

了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。

了解正多面体的概念,了解多面体的欧拉公式。

了解球的概念,掌握球的性质,掌握球的表面积和体积公式。

10.排列、组合、二项式定理

掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

11.概率

了解随机事件的统计规律性和随机事件概率的意义。

了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率。

了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率。

会计算事件在 n 次独立重复试验中恰好发生 k 次的概率。

选修Ⅰ

1.统计

了解随机抽样、分层抽样的意义,会用它们对简单实际问题进行抽样;

会用样本频率分布估计总体分布,

会利用样本估计总体期望值和方差,体会如何从数据中提取信息并作出统计推断。

2.导数

理解导数是平均变化率的极限;理解导数的几何意义。

掌握函数 的导数公式,会求多项式函数的导数。

理解极大值、极小值、最大值、最小值的概念,

会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值。

选修Ⅱ

1.概率与统计

了解离散型随机变量的意义,

会求出某些简单的离散型随机变量的分布列。

了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。

会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本。

会用样本频率分布估计总体分布。

了解正态分布的意义及主要性质。

了解线性回归的方法和简单应用。

2. 极限

理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

从数列和函数的变化趋势了解数列极限和函数极限的概念。

掌握极限的四则运算法则;会求某些数列与函数的极限。

了解连续的意义,借助几何直观理解闭区间上连续函数有最大值和最小值的性质。

3.导数

了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);

掌握函数在一点处的导数的定义和导数的几何意义;

理解导函数的概念。

熟记基本导数公式(c,xm(m为有理数), sin x, cos x, ex, ax, ln x,logax的导数);

掌握两个函数和、差、积、商的求导法则;

了解复合函数的求导法则,会求某些简单函数的导数。

会从几何直观了解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。

4.数系的扩充--复数

理解复数的有关概念;

掌握复数的代数表示与几何意义。

掌握复数代数形式的运算法则,能进行复数代数形式的加、减、乘、除运算。

㈢ 高一数学各章知识小结

一 集合与简易逻辑
1.集合的分类:有限集,无限集,空集
2.集合中元素的性质:
互异性:一个集合不允许有相同元素出现
无序性:集合中的元素构成与顺序无关
确定性:对于一个给定的集合,集合中的元素必须是确定的,即一个元素或者属于该集合,或者不属于该集合,二者必局其一
3.元素与集合的关系:属于不属于
4.常用数集:自然数集,正整数集,整数集,有理数集,实数集,复数集(这个你现在用不到,以后会学到)
5.集合的常用表示方法:举例法,描述法,图示法
6.集合间的关系:子集,真子集,相等

二 函数(这是个重点)
1.定义(这个书上有)
2.函数三要素:定义域,对应法则,值域
注意:两个函数的三要素中,有一个不同,则他们就是不同的函数
两个函数当且仅当定义域和对应法则在实质上完全相同时,才是同一函数
3.函数值域的集中求法:观察,配方,代换,判别式
4.性质:单调性(求大小值),奇偶性
5.基本初等函数:
(1)指数函数:也没有办法说清楚,熟记那两个图像,就会判断了
(2)对视函数:有对数,常用对数和自然对数
他们有相关的性质和运算法则,打出来实在不方便,树上都有,你找一下
这个你也要记住图像 还有相关定义
三 数列 (主要等差数列,等比数列)
1.定义
2.公式
等差通项数列公式:
等差数列前n项和:
等比数列通项公式
等比数列前n项和:
(这里面还有等比中项和等差中项,公式书上都有)

这个多做各种题型,就会熟悉的,注意观察数列的形式判断是什么数列,掌握求数列通向公式的几种方法,和求和公式,求和方法,比如公式法,分组求和法,裂项相消,错位相减,等等
四 三角函数 (这一章没有什么可说的,你只要记住那些角相互间的转化公式就可以了)
1.象限角,知道都是第几象限的。所以只要记熟特殊角的三角函数值和一些重要的定理就行
2.角的度量,弧度制,弧度和角度的转化,弧度制下的胡长公式及扇形面积公式
3.任意角的三角函数(一些特殊角的三角函数,这个记住,有意做题):正弦余弦,正切余切
4.三角函数的诱导公式(理解记住)
5.三角函数的图像与性质
6.Y=Asin(wx+p)(类似这种形式的函数图象,键盘上没有字母)的图像及变换
这类好像会涉及求最小周期
五 平面向量
1.向量及其表示:向量与数量,有向线段,向量的表示,响亮的模,零向量,单位向量,平行向量,共线向量,相等向量。
2.向量的加减:运算法则,两向量的和,运算律(交换和结合律),向量的减法 ,向量的数乘(向量数乘的定义,运算律,两向量共线定理)
3.平面向量的基本定理(平面向量的基本定理,两个向量的夹角,向量的共线与垂直)
4.平面向量的正交分解及坐标表示(这里还有坐标运算)
5.平面向量的数量积
大概就是这些了 还挺累的,呵呵,希望对你有帮助!

㈣ 高一人教版数学要学的知识有哪些

初中数学宝典,你知道学习数学最重要的是什么吗?

在初中学习数学这们课程的时候很多的学生都是比较烦恼的,因为这们课程是非常难的,并且难点非常多,很多的学生在刚开始学习的时候还可以更得上,但是过一段时间之后就会变得非常的吃力,那么你知道初中数学宝典是什么吗?我们来了解一下吧!

复习知识点

以上就是初中数学宝典的内容,当学习吃力的时候可以先复习一下之前的内容,当然这个时候之前记得笔记就可以用来复习了,这样可以更好的帮助我们学习后期的内容,并且可以改善学习吃力的问题.

㈤ 人教版高一数学上册全部公式概念

高中数学常用公式及常用结论

1. 元素与集合的关系
, .
2.德摩根公式
.
3.包含关系

4.容斥原理

.
5.集合 的子集个数共有 个;真子集有 –1个;非空子集有 –1个;非空的真子集有 –2个.
6.二次函数的解析式的三种形式
(1)一般式 ;
(2)顶点式 ;
(3)零点式 .
7.解连不等式 常有以下转化形式

.
8.方程 在 上有且只有一个实根,与 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程 有且只有一个实根在 内,等价于 ,或 且 ,或 且 .
9.闭区间上的二次函数的最值
二次函数 在闭区间 上的最值只能在 处及区间的两端点处取得,具体如下:
(1)当a>0时,若 ,则 ;
, , .
(2)当a<0时,若 ,则 ,若 ,则 , .
10.一元二次方程的实根分布
依据:若 ,则方程 在区间 内至少有一个实根 .
设 ,则
(1)方程 在区间 内有根的充要条件为 或 ;
(2)方程 在区间 内有根的充要条件为 或 或 或 ;
(3)方程 在区间 内有根的充要条件为 或 .
11.定区间上含参数的二次不等式恒成立的条件依据
(1)在给定区间 的子区间 (形如 , , 不同)上含参数的二次不等式 ( 为参数)恒成立的充要条件是 .
(2)在给定区间 的子区间上含参数的二次不等式 ( 为参数)恒成立的充要条件是 .
(3) 恒成立的充要条件是 或 .
12.真值表
p q 非p p或q p且q
真 真 假 真 真
真 假 假 真 假
假 真 真 真 假
假 假 真 假 假
13.常见结论的否定形式
原结论 反设词 原结论 反设词
是 不是 至少有一个 一个也没有
都是 不都是 至多有一个 至少有两个
大于 不大于 至少有 个
至多有( )个

小于 不小于 至多有 个
至少有( )个

对所有 ,
成立 存在某 ,
不成立




对任何 ,
不成立 存在某 ,
成立




14.四种命题的相互关系

原命题 互逆 逆命题
若p则q 若q则p
互 互
互 为 为 互
否 否
逆 逆
否 否
否命题 逆否命题
若非p则非q 互逆 若非q则非p

15.充要条件
(1)充分条件:若 ,则 是 充分条件.
(2)必要条件:若 ,则 是 必要条件.
(3)充要条件:若 ,且 ,则 是 充要条件.
注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.
16.函数的单调性
(1)设 那么
上是增函数;
上是减函数.
(2)设函数 在某个区间内可导,如果 ,则 为增函数;如果 ,则 为减函数.
17.如果函数 和 都是减函数,则在公共定义域内,和函数 也是减函数; 如果函数 和 在其对应的定义域上都是减函数,则复合函数 是增函数.
18.奇偶函数的图象特征
奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.
19.若函数 是偶函数,则 ;若函数 是偶函数,则 .
20.对于函数 ( ), 恒成立,则函数 的对称轴是函数 ;两个函数 与 的图象关于直线 对称.
21.若 ,则函数 的图象关于点 对称; 若 ,则函数 为周期为 的周期函数.
22.多项式函数 的奇偶性
多项式函数 是奇函数 的偶次项(即奇数项)的系数全为零.
多项式函数 是偶函数 的奇次项(即偶数项)的系数全为零.
23.函数 的图象的对称性
(1)函数 的图象关于直线 对称
.
(2)函数 的图象关于直线 对称
.
24.两个函数图象的对称性
(1)函数 与函数 的图象关于直线 (即 轴)对称.
(2)函数 与函数 的图象关于直线 对称.
(3)函数 和 的图象关于直线y=x对称.
25.若将函数 的图象右移 、上移 个单位,得到函数 的图象;若将曲线 的图象右移 、上移 个单位,得到曲线 的图象.
26.互为反函数的两个函数的关系
.
27.若函数 存在反函数,则其反函数为 ,并不是 ,而函数 是 的反函数.
28.几个常见的函数方程
(1)正比例函数 , .
(2)指数函数 , .
(3)对数函数 , .
(4)幂函数 , .
(5)余弦函数 ,正弦函数 , ,
.
29.几个函数方程的周期(约定a>0)
(1) ,则 的周期T=a;
(2) ,
或 ,
或 ,
或 ,则 的周期T=2a;
(3) ,则 的周期T=3a;
(4) 且 ,则 的周期T=4a;
(5)
,则 的周期T=5a;
(6) ,则 的周期T=6a.
30.分数指数幂
(1) ( ,且 ).
(2) ( ,且 ).
31.根式的性质
(1) .
(2)当 为奇数时, ;
当 为偶数时, .
32.有理指数幂的运算性质
(1) .
(2) .
(3) .
注: 若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.
33.指数式与对数式的互化式
.
34.对数的换底公式
( ,且 , ,且 , ).
推论 ( ,且 , ,且 , , ).
35.对数的四则运算法则
若a>0,a≠1,M>0,N>0,则
(1) ;
(2) ;
(3) .
36.设函数 ,记 .若 的定义域为 ,则 ,且 ;若 的值域为 ,则 ,且 .对于 的情形,需要单独检验.
37. 对数换底不等式及其推广
若 , , , ,则函数
(1)当 时,在 和 上 为增函数.
, (2)当 时,在 和 上 为减函数.
推论:设 , , ,且 ,则
(1) .
(2) .
38. 平均增长率的问题
如果原来产值的基础数为N,平均增长率为 ,则对于时间 的总产值 ,有 .
39.数列的同项公式与前n项的和的关系
( 数列 的前n项的和为 ).
40.等差数列的通项公式

其前n项和公式为

.
41.等比数列的通项公式

其前n项的和公式为

或 .
42.等比差数列 : 的通项公式为

其前n项和公式为
.
43.分期付款(按揭贷款)
每次还款 元(贷款 元, 次还清,每期利率为 ).