当前位置:首页 » 基础知识 » 学科知识总结数学篇
扩展阅读
四岁儿童睡袋怎么制作 2024-11-08 09:08:06

学科知识总结数学篇

发布时间: 2022-07-15 03:56:12

1. 初一数学总结。 800字

初一数学考试范文
初一数学的期中考试结束了,学生的成绩也是参差不齐,为什么有的学生能够取得一个接近满分的数学成绩而有些学生的成绩却是比较差呢?这就是初一数学的的问题,初一数学是一个比较简单的时期,但是相对于刚刚接触初中数学的学生来说接受起来也是有一些难度,这就需要初一的学生能够在平时的数学学习的时候多去与小学学过的知识相比较。初一数学中的代数式学习的时候就想着代数式就是用了一些字母代替了一些数字,再就是初一数学的考试的时候一定要细心,因为初一数学的有理数的计算的问题只要有一点马虎的时候就会错很多的选择填空,所以这个问题要引起特别的注意。润扬教育开设初一数学一对一辅导,平时的时候注重初一学生的掌握知识的程度,在考前及时给学生一定的提示,让学生能够在数学的考试的时候能够获取更多的得分技巧,让学生能够有在考试的时候有一个良好的心情获得一个优异的成绩。陆陆续续各个学校的半期考试已结束,有些同学考出了优异的成绩,但是我们了解到还是有很多同学在数学学习上遇到了困难,但尽管很努力,但是成绩总是不理想(150的总分,只能考120分左右,甚者更低)。
这究竟是为什么呢?!
初中数学是一个整体。初二的难点最多,初三的考点最多。相对而言,初一数学知识点虽然很多,但都比较简单。很多同学在学校里的学习中感受不到压力,慢慢积累了很多小问题,这些问题在进入初二,遇到困难(如学科的增加、难度的加深)后,就凸现出来。
有些新同学就是对初一数学不够重视,在进入初二后,发现跟不上老师的进度,感觉学习数学越来越吃力,希望参加我们的辅导班来弥补。这个问题究其原因,主要是对初一数学的基础性,重视不够。
我们这里先列举一下在初一数学学习中经常出现的几个问题:
1、对知识点的理解停留在一知半解的层次上;
2、解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力;
3、解题时,小错误太多,始终不能完整的解决问题;
4、解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏;
5、未养成总结归纳的习惯,不能习惯性的归纳所学的知识点;
以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。相反,如果能够打好初一数学基础,初二的学习只会是知识点上的增多和难度的增加,在学习方法上同学们是很容易适应的。
那怎样才能打好初一的数学基础呢?
(1)细心地发掘概念和公式
很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基矗如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?
我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
(2)总结相似的类型题目
这个工作,不仅仅是老师的事,我们的同学要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。
我们的建议是:“总结归纳”是将题目越做越少的最好办法。 (3)收集自己的典型错误和不会的题目
同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。
我们的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。
(4)就不懂的问题,积极提问、讨论
发现了不懂的问题,积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。直到无法赶上步伐。
讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。
我们的建议是:“勤学”是基础,“好问”是关键。
(5)注重实战(考试)经验的培养
考试本身就是一门学问。有些同学平时成绩很好,上课老师一提问,什么都会。课下做题也都会。可一到考试,成绩就不理想。出现这种情况,有两个主要原因:一是,考试心态不不好,容易紧张;二是,考试时间紧,总是不能在规定的时间内完成。心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼。每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。做题速度慢的问题,需要同学们在平时的做题中解决。自己平时做作业可以给自己限定时间,逐步提高效率。另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。
我们的建议是:把“做作业”当成考试,把“考试”当成做作业。
希望我们这些建议能给孩子起到实质性的作用,在以后的学习中更上一层楼。
第二篇:初一数学教学
我在工作中,坚持努力提高自己的思想政治水平和教学业务能力,新的时代,新的教育理念,教育也提出新的改革,新课程的实施,对我们教师的工作提出了更高的要求,我从各方面严格要求自己,努力提高自己的业务水平丰富知识面,结合本校的实际条件和学生的实际情况,勤勤恳恳,兢兢业业,使教学工作有,有组织,有步骤地开展。立足现在,放眼未来,为使今后的工作取得更大的进步不断努力,现对近年来教学工作作出总结,希望能发扬优点,克服不足,总结检验教训,继往开来,以促进教学工作更上一层楼。
一、坚持认真备课,备课中我不仅备学生而且备教材备教法,根据教材内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。每一课都做到“有备而来”,每堂课都在课前做好充分的准备,并制作各种利于吸引学生注意力的有趣教具,课后及时对该课作出总结,写好教学后记,并认真按搜集每课书的知识要点,归纳成集。
二、努力增强我的上课技能,提高教学质量,使讲解清晰化,条理化,准确化,条理化,准确化,情感化,生动化,做到线索清晰,层次分明,言简意赅,深入浅出。在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师讲得尽量少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高。现在学生普遍反映喜欢上语文课,就连以前极讨厌语文的学生都乐于上课了。
三、与同事交流,虚心请教其他老师。在教学上,有疑必问。在各个章节的学习上都积极征求其他老师的意见,学习他们的方法,同时,多听老师的课,做到边听边讲,学习别人的优点,克服自己的不足,并常常邀请其他老师来听课,征求他们的意见,改进工作。
四、完善批改作业:布置作业做到精读精练。有针对性,有层次性。为了做到这点,我常常到各大书店去搜集资料,对各种辅助资料进行筛选,力求每一次练习都起到最大的效果。同时对学生的作业批改及时、认真,分析并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结,进行透切的评讲,并针对有关情况及时改进教学方法,做到有的放矢。
五、做好课后辅导工作,注意分层教学。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。对后进生的辅导,并不限于学习知识性的辅导,更重要的是学习思想的辅导,要提高后进生的成绩,首先要解决他们心结,让他们意识到学习的重要性和必要性,使之对学习萌发兴趣。要通过各种途径激发他们的求知欲和上进心,让他们意识到学习并不是一项任务,也不是一件痛苦的事情。而是充满乐趣的。从而自觉的把身心投放到学习中去。这样,后进生的转化,就由原来的简单粗暴、强制学习转化到自觉的求知上来。使学习成为他们自我意识力度一部分。在此基础上,再教给他们学习的方法,提高他们的技能。并认真细致地做好查漏补缺工作。后进生通常存在很多知识断层,这些都是后进生转化过程中的拌脚石,在做好后进生的转化工作时,要特别注意给他们补课,把他们以前学习的知识断层补充完整,这样,他们就会学得轻松,进步也快,兴趣和求知欲也会随之增加。
六、积极推进素质教育。新课改提了的,要以提高学生素质教育为主导思想,为此,我在教学工作中并非只是传授知识,而是注意了学生能力的培养,把传授知识、技能和发展智力、能力结合起来,在知识层面上注入了思想情感教育的因素,发挥学生的创新意识和创新能力。让学生的各种素质都得到有效的发展和培养。在以后的教学中要多想其他有经验的老师多学习使自己早一日成为优秀的教育者。
第三篇:北京初一数学期中考试总结
考试已经结束,一般期中考试都是各个学校自主命题,但整体考查范围比较统一,下面经过e度专家团的隋秀岩老师对这次期中考试数学内容的具体分析。
一、有理数基本概念
1.相反数、绝对值、倒数
其实在这两张张卷子里,仅仅有一道题是考查这个内容的,之所以把他拿出来作为一类题型,是因为初一期末考试,不仅仅这一个学校考查了这道题,更重要的是在三年后的中考中,选择题的第一道题,也是这样的题目。2.基本概念
对基本概念的考查,对概念大小,所属关系的不明确,像有理数包括正数、负数、0,很多同学容易把0丢掉。
二、科学记数法
这里会考查的是四舍五入法取近似值和有效数字问题,重点的室考查用科学记数法表示熟的问题,这类问题在中考中也会出现,而且很容易拿到分数。
三、单项式、多项式的基本概念
主要易错点在于对基本概念的理解,次数、系数混淆,查次数的时候漏查字母,查项数的时候漏查常数项。重点是合并同类项的问题,这类问题是整式加减的基础。
四、绝对值的性质、平方的性质
主要是考查绝对值和平方的非负性,以及两个非负性的综合。
五、有理数的四则运算
有理数四则运算,易错点在于去括号、运算顺序、去绝对值等。有理数四则运算也为我们初中的代数部分奠定基础,虽然小学我们对计算就一直在接触,不过初中的计算很多同学还会出现错误,主要是初中的计算与小学计算存在着本质的差别。初中的计算着重考查孩子的细心程度,过程成为成败的关键;而小学的计算主要把结果写出来,就能够得到分数。
六、整式加减
整式的化简求值,这也是整式加减的关键,在初中的计算中,并没有一个让我们算到崩溃的题,一般都会有方法可循,所以一般的整式加减的题也是一样,要先化简再求值,由于步骤很多,所以错误率就相对高一点。
第四篇:初一数学教学工作总结
本学期的工作即将结束,本期来在学校的领导下,在广大教师的支持下,在工作中取得了较好的成绩,同时自身素质也得到了较大的提高,为了能更好地做好今后的工作,现将本期所作工作总结如下。
一学期来,本人认真备课、上课、听课、评课,及时批改作业、讲评作业,做好课后辅导工作,广泛涉猎各种知识,形成比较完整的知识结构,严格要求学生,尊重学生,发扬教学民主,使学生学有所得,不断提高,从而不断提高自己的教学水平和思想觉悟,并顺利完成教育教学任务。
开学时,任初一(6)班班主任和初一年级(5)班的数学课教学工作。开学时,为了搞好新生工作,经常抽空与学生交谈,了解学生的情况,很快便与他们建立起了良好的师生关系.
要使学生逐渐习惯自学方法,除认真做好学生的思想教育工作,明确学习目的,端正学习态度外,要逐渐教会学生阅读、理解、掌握教材,在教材上作眉批,教会学生做练习和核对答案的方法和要求,并作出示范,在这一阶段中,我尽快认识、了解学生,掌握了学生的基本情况。
我在教学中的主要环节是以下几方面:
1、课前准备工作
认真钻研教材,对教材的基本思想、基本概念,每句话、每个字都弄清楚,了解教材的结构,重点与难点,掌握知识的逻辑,能运用自如,知道应补充哪些资料,怎样才能教好。除认真钻研教材、吃透教材外,还要深入了解学生,了解学生原有的知识技能的质量,他们的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的预防措施。这样能使课堂教学中的辅导有针对性,避免盲目性。在了解学生的基础上考虑教法,解决如何把已掌握的教材传授给学生,包括如何组织教材、如何安排每节课的活动。把教材和学生实际很好地结合起来,确定课堂上要讲的主要内容。
2、课堂工作
(1)首先搞好组织教学,这是顺利进行正常教学的保证。
新课程数学的组织教学与传统的组织教学有明显的不同,我们知道,组织教学的任务就是把全班学生的注意力自始至终组织到当堂课的学习任务上来。传统的课堂教学,更多地是教师将学生的注意力集中在教师的讲授上,但是根据学生的年龄特征,一般地,初中学生,特别是低年级学生的注意力容易分散,注意的集中是相对的,分散是绝对的,因此,组织教学应贯穿于全部教学过程之中。在组织教学中,教师要能真正起作用,达到目的,师生之间的感情因素非常重要,因此,教师的威信将起到较大作用。教师既要亲切又要严肃,要使课堂气氛活而不乱,尽量避免学生产生压抑和过度焦虑,使学生在和谐的气氛中发挥出正常的智力水平,高效地进行学习。
(2)其次是复习旧课,引入新课。根据学生掌握知识的情况以及涉及本课的有关知识进行复习,要简明扼要,抓住要点,点穿实质,然后,自然过渡,引入新课,简述学习课题,布置学习内容,明确学习要求,以保证教学过程的计划性和完整性。充分地照顾了学生学习上的差异,这样学生可以快者快学,慢者慢学,达到了班集体与个别化相结合。
再次是学生根据教师要求独立进行学习活动。在理解教材内容的基础上做练习,及时反馈学习效果,自己不能解决的问题及时请教老师。对于学习思维品质不踏实的学生,要注意用具体的事例,通过严格要求,逐渐培养他们的踏实品质;对于学习成绩优异者,应指导他们向深度、广度发展,向他们提出进一步深入学习的要求,并具体落实,让他们能够充分利用课堂上这段宝贵的时间,充分发挥其潜力,提高效率,超额超前完成学习任务,对于学习基础较差,思维不敏捷的学生,加强重点辅导。在这里教师掌握每个学生的情况和把握整个课堂,始终处于积极主动的状态非常重要。
3、课后辅导工作
要提高教学质量,还要做好课后辅导工作,初中的学生爱动、好玩,缺乏自控能力,常在学习上不能按时完成作业,有的学生抄袭作业,针对这种问题,就要抓好学生的思想教育,并使这一工作贯彻到对学生的学习指导中去,还要做好对学生学习的辅导和帮助工作,尤其在后进生的转化上。在辅导工作中,我善于根据学生的不同情况,设计不同的问题,采用不同的方式,主动地去引导、启发学生,可问他是怎样想的?怎样理解的?听一听他们的见解掌握他们的情况,并进行有针对性,切合实际的个别辅导,真正做到因材施教。这对于提高差生,大面积提高初中数学教学质量是会起到一定作用的。差生形成的原因虽然是多方西的,但是学生的学习基础,学习兴趣,学习动机,学习方法等方面是值得引起我们注意的问题。只要老师坚持不懈,会逐渐增强学生的学习兴趣,从而产生强烈的学习动机,不断地提高学习水平。在教学教研上我积极参与听课、评课,虚心向同行学习教学方法,博采众长,提高教学水平。培养多种兴趣爱好,博览群书,不断拓宽知识面,为教学内容注入新鲜血液。
“金无足赤,人无完人”,在教学工作中难免有缺陷,例如,课堂语言平缓,平时考试较少,语言不够生动。走进21世纪,社会对教师的素质要求更高,在今后的教育教学工作中,我将更严格要求自己,努力工作,发扬优点,改正缺点,开拓前进,为美好的明天奉献自己的力量。
第五篇:初一数学期中总结
初一学生大多数是13,14岁的少年,处于人生长身体,长知识的阶段,他们好奇,热情,活泼,各方面都朝气蓬勃;但自制力差,注意力不集中....总之,初一学生处于半幼稚,半成熟阶段,掌握其规律教学,更应善于引导,使他们旺盛的精力,强烈的好奇化为强烈的求知欲望和认真学习的精神,变被动学习为主动自觉学习.下面我谈谈这一年来我对初一数学的几点体会:
明确学习目的性
初一学生学习积极性的高低,一般是由学习动机所决定,入学初,我对班级进行调查,学生的学习动机可大致分为:
学习无目的,无兴趣,应付家长占52.8%
学习为个人前途,为家长争光占20.2%
学习为国家,为祖国的建设服务占27%
从中可以看出大部分同学学习目的不明确,但他们的可塑性很强,除了加强正常的正面教育,还可利用知识的魅力吸引学生.
精心设疑,激发学习兴趣,点燃学生对数学"爱"的火花
爱因斯坦有句名言,"兴趣是最好的老师".一个人有了"兴趣"这位良师,他的知觉就会清晰而明确,记忆会深刻而持久,在学习上变被动为主动.在教学中,特别注意以知识本初一数学考试总结(2) 身吸引学生.巧妙引入,精心设疑,造成学生渴求新知识的心理状态,激发学生学习的积极性和主动性.如利用课本每一章开始的插图,提出一般的实际问题,这样既能提高学生的学习兴趣,又能帮助学生了解每一章的学习目的;又如代数第二章有理数的引入,我给学生举了一个实例:从讲台走向门(向南)走3米,从门走回讲台(向北)也走3米,接着我问学生两个问题:(1)我的位置变了没有 (2)我走了几米 能用数学式子表示吗 对于这个具体问题,学生都说我的位置没变,可实际走了6米,怎么用数学式子表示就感到茫然了.这个例子诱发了学生的胃口,趁(转载自百分网 学生急于求知的心理状态引入新的课题:"为了满足实际需要,必须把学过的算术数扩充到有理数."
此外,还利用学生每天的作业反馈和单元测验成绩的反馈,进一步激发和培养学生的兴趣.
精心设计教学过程,改变课堂教学方法,适应生理和心理特点
学生的学习心理状态往往直接受到课堂气氛的影响,因此一定要把学生的学习内在心理调动起来,备课时要根据学生的智力发展水平和数学的心理特点来确定教学的起点,深度和广度,让个层次的学生都有收获.为了适应学习注意里不能长时间集中的生理特点,每节课授课不超过25分钟,剩下的时间看书或做练习;练习要精心设计,形式多样,口算,笔算相结合;有时一题目引导学生用两种方法叫同一张桌子的同学用不同的方法计算;有时叫不同水平的学生上黑板做难易程度不同的练习,让学生尝到成功的喜悦,是不同层次的学生都得到自我表现的机会,获得心理平衡.
寓数学思想于课堂教学中
数学观念,思想和方法是数学科学中的重要组成因素,是数学科学的灵魂,教师在传授知识的同时要注重数学思想方法的教育,把常用课本中没有专门讲述的推理论证及处理问题的思想方法,适时适度的教给学生,这有益于提高学生的主动性和分析问题,解决问题的能力.如有理数这一章特别突出了数型结合的思想,紧扣数轴逐步介绍数a 与a的对应关系,启发学生从数与形两方面去发现问题,解决问题.练习时引导学生思考一般情形下的结论,从中渗透归纳的思想方法,促进其思维能力的形成.
其实,数学思想渗透到概念的定义,法则的推导,定理的问题和具体解答中,这就要求教师在教学过程中能站在方法-论的高度讲出学生在课本的字里行间看不出的奇珍异宝,讲出决策和创造的方法,精心提炼,着意渗透,经常运用.
工作总结 http://0s.net.cn/gongzuozongjie/201420104130.html
1条回答

2013-09-12 10:07热心网友 最快回答
日月如梭,时光飞逝,一天一天的过去了,期末考试终于都结束了. 在这个学期,我完成了从一名小学生到初中生的转变,适应了中学-----这个新的环境。老师、同学们都给了我很大的帮助和无私的关怀。在初一的学习生活中,我学到了不少新的知识,例如:代数与方程、英语句式、新的散文与诗歌……真是非常丰富。而最令我高兴的是我终于学会了学习英语的方法,课堂上要做笔记。可是我并不会骄傲,虽然我的英语成绩已经很不错了,但是,我会继续努力,直到最满意为止!当然,对于中学生活还有一些不适应的地方。老师从手把手教我们转变为循序渐进的引导我们的自学能力。我正在逐步适应这种过程,因为我已经是一名中学生了。有些课程,我还有许多没有搞懂的地方,我会在暑假中自学掌握。因为曾经有人说过:“越搞不懂的地方就要越靠近它。”所以,我会继续努力,为求做的更好!我要在初二“来临”前,把所有不懂的地方弄懂,以最好的状态迎接初二的“来临”。 经过上学期的失败经历...这个学期我更懂得待人接物的技巧,但是一波未停一波又起...成绩下降了好几次。我想这是因为我不用功的问题,不到考试从来不知道紧张,不知道用功。我一定要改掉这个坏习惯,知识不是一天两天就能完成的,而是日日月月一步一步的积累而形成的。升入初一,就说明学生进入了一个全新的学习阶段,开始思考如何用更加科学更加有效的方法来探索各学科的奥秘。这是需要一个相对漫长的过程来总结的,因为每个人的思维方式都是不一样的,所以适合的学习方法也就多种多样。我们每个学生都要做过无数次尝试后,才能真正选择到一种适合自己的学习方法,所以说初一这个学年是一个摸索的阶段也就不无道理了。刚进入初一,增加了许多新的学科,像数学、语文、英语这样的基础课也大幅的提高了难度。我们会感到有些手忙脚乱,即使是上课认真听讲,但因为没有及时的进行巩固练习,也觉得在学习上有些吃力。有些课的基础没有打好,就会导致在初二、初三的学习中出现大漏洞,弥补起来就比较困难了。所以在初一的时候一定要打好根基,每一个细小的知识点都要做到明白无误的掌握。有了好良好的基础,才能在未来两年的学习中取得更快的进步。初一是整个初中学习打基础的学年。有句话说得好:好的开始是成功的一半!有了初一打下的良好基础做铺垫,才能在初二的提高和初三的冲刺中得到飞跃性的进步!我相信我会做得更好,我将继续努力!!!

2. 小学数学知识点总结(全部)

对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?

由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.

3. 高中数学知识总结

高中数学知识点总结
1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

中元素各表示什么?

注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。

3. 注意下列性质:

(3)德摩根定律:

4. 你会用补集思想解决问题吗?(排除法、间接法)

的取值范围。

6. 命题的四种形式及其相互关系是什么?
(互为逆否关系的命题是等价命题。)
原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?
(一对一,多对一,允许B中有元素无原象。)
8. 函数的三要素是什么?如何比较两个函数是否相同?
(定义域、对应法则、值域)
9. 求函数的定义域有哪些常见类型?

10. 如何求复合函数的定义域?

义域是_____________。

11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?

12. 反函数存在的条件是什么?
(一一对应函数)
求反函数的步骤掌握了吗?
(①反解x;②互换x、y;③注明定义域)

13. 反函数的性质有哪些?
①互为反函数的图象关于直线y=x对称;
②保存了原来函数的单调性、奇函数性;

14. 如何用定义证明函数的单调性?
(取值、作差、判正负)
如何判断复合函数的单调性?

∴……)
15. 如何利用导数判断函数的单调性?

值是( )
A. 0 B. 1 C. 2 D. 3

∴a的最大值为3)
16. 函数f(x)具有奇偶性的必要(非充分)条件是什么?
(f(x)定义域关于原点对称)

注意如下结论:
(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

17. 你熟悉周期函数的定义吗?

函数,T是一个周期。)

如:

18. 你掌握常用的图象变换了吗?

注意如下“翻折”变换:

19. 你熟练掌握常用函数的图象和性质了吗?

的双曲线。

应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程

②求闭区间[m,n]上的最值。
③求区间定(动),对称轴动(定)的最值问题。
④一元二次方程根的分布问题。

由图象记性质! (注意底数的限定!)

利用它的单调性求最值与利用均值不等式求最值的区别是什么?

20. 你在基本运算上常出现错误吗?

21. 如何解抽象函数问题?
(赋值法、结构变换法)

22. 掌握求函数值域的常用方法了吗?
(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。)
如求下列函数的最值:

23. 你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?

24. 熟记三角函数的定义,单位圆中三角函数线的定义

25. 你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?

(x,y)作图象。

27. 在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。

28. 在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?

29. 熟练掌握三角函数图象变换了吗?
(平移变换、伸缩变换)
平移公式:

图象?

30. 熟练掌握同角三角函数关系和诱导公式了吗?

“奇”、“偶”指k取奇、偶数。

A. 正值或负值 B. 负值 C. 非负值 D. 正值

31. 熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?
理解公式之间的联系:

应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。)
具体方法:

(2)名的变换:化弦或化切
(3)次数的变换:升、降幂公式
(4)形的变换:统一函数形式,注意运用代数运算。

32. 正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?

(应用:已知两边一夹角求第三边;已知三边求角。)

33. 用反三角函数表示角时要注意角的范围。

34. 不等式的性质有哪些?

答案:C
35. 利用均值不等式:

值?(一正、二定、三相等)
注意如下结论:

36. 不等式证明的基本方法都掌握了吗?
(比较法、分析法、综合法、数学归纳法等)
并注意简单放缩法的应用。

(移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。)
38. 用“穿轴法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始

39. 解含有参数的不等式要注意对字母参数的讨论

40. 对含有两个绝对值的不等式如何去解?
(找零点,分段讨论,去掉绝对值符号,最后取各段的并集。)

证明:

(按不等号方向放缩)
42. 不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题)

43. 等差数列的定义与性质

0的二次函数)

项,即:

44. 等比数列的定义与性质

46. 你熟悉求数列通项公式的常用方法吗?
例如:(1)求差(商)法

解:

[练习]

(2)叠乘法

解:

(3)等差型递推公式

[练习]

(4)等比型递推公式

[练习]

(5)倒数法

47. 你熟悉求数列前n项和的常用方法吗?
例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

解:

[练习]

(2)错位相减法:

(3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

[练习]

48. 你知道储蓄、贷款问题吗?
△零存整取储蓄(单利)本利和计算模型:
若每期存入本金p元,每期利率为r,n期后,本利和为:

△若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类)
若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n次还清。如果每期利率为r(按复利),那么每期应还x元,满足

p——贷款数,r——利率,n——还款期数
49. 解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

(2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一

(3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不

50. 解排列与组合问题的规律是:
相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。
如:学号为1,2,3,4的四名学生的考试成绩

则这四位同学考试成绩的所有可能情况是( )
A. 24 B. 15 C. 12 D. 10
解析:可分成两类:

(2)中间两个分数相等

相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。
∴共有5+10=15(种)情况
51. 二项式定理

性质:

(3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第

表示)

52. 你对随机事件之间的关系熟悉吗?

的和(并)。

(5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。

(6)对立事件(互逆事件):

(7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。

53. 对某一事件概率的求法:
分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即

(5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生

如:设10件产品中有4件次品,6件正品,求下列事件的概率。
(1)从中任取2件都是次品;

(2)从中任取5件恰有2件次品;

(3)从中有放回地任取3件至少有2件次品;
解析:有放回地抽取3次(每次抽1件),∴n=103
而至少有2件次品为“恰有2次品”和“三件都是次品”

(4)从中依次取5件恰有2件次品。
解析:∵一件一件抽取(有顺序)

分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。
54. 抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。
55. 对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。
要熟悉样本频率直方图的作法:

(2)决定组距和组数;
(3)决定分点;
(4)列频率分布表;
(5)画频率直方图。

如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。

56. 你对向量的有关概念清楚吗?
(1)向量——既有大小又有方向的量。

在此规定下向量可以在平面(或空间)平行移动而不改变。
(6)并线向量(平行向量)——方向相同或相反的向量。
规定零向量与任意向量平行。

(7)向量的加、减法如图:

(8)平面向量基本定理(向量的分解定理)

的一组基底。
(9)向量的坐标表示

表示。

57. 平面向量的数量积

数量积的几何意义:

(2)数量积的运算法则

[练习]

答案:

答案:2

答案:
58. 线段的定比分点

※. 你能分清三角形的重心、垂心、外心、内心及其性质吗?
59. 立体几何中平行、垂直关系证明的思路清楚吗?
平行垂直的证明主要利用线面关系的转化:

线面平行的判定:

线面平行的性质:

三垂线定理(及逆定理):

线面垂直:

面面垂直:

60. 三类角的定义及求法
(1)异面直线所成的角θ,0°<θ≤90°

(2)直线与平面所成的角θ,0°≤θ≤90°

(三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。)
三类角的求法:
①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
[练习]
(1)如图,OA为α的斜线OB为其在α内射影,OC为α内过O点任一直线。

(2)如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30°。
①求BD1和底面ABCD所成的角;
②求异面直线BD1和AD所成的角;
③求二面角C1—BD1—B1的大小。

(3)如图ABCD为菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB与面PCD所成的锐二面角的大小。

(∵AB∥DC,P为面PAB与面PCD的公共点,作PF∥AB,则PF为面PCD与面PAB的交线……)
61. 空间有几种距离?如何求距离?
点与点,点与线,点与面,线与线,线与面,面与面间距离。
将空间距离转化为两点的距离,构造三角形,解三角形求线段的长(如:三垂线定理法,或者用等积转化法)。
如:正方形ABCD—A1B1C1D1中,棱长为a,则:
(1)点C到面AB1C1的距离为___________;
(2)点B到面ACB1的距离为____________;
(3)直线A1D1到面AB1C1的距离为____________;
(4)面AB1C与面A1DC1的距离为____________;
(5)点B到直线A1C1的距离为_____________。

62. 你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质?
正棱柱——底面为正多边形的直棱柱
正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。

正棱锥的计算集中在四个直角三角形中:

它们各包含哪些元素?

63. 球有哪些性质?

(2)球面上两点的距离是经过这两点的大圆的劣弧长。为此,要找球心角!
(3)如图,θ为纬度角,它是线面成角;α为经度角,它是面面成角。

(5)球内接长方体的对角线是球的直径。正四面体的外接球半径R与内切球半径r之比为R:r=3:1。

积为( )

答案:A
64. 熟记下列公式了吗?

(2)直线方程:

65. 如何判断两直线平行、垂直?

66. 怎样判断直线l与圆C的位置关系?
圆心到直线的距离与圆的半径比较。
直线与圆相交时,注意利用圆的“垂径定理”。
67. 怎样判断直线与圆锥曲线的位置?

68. 分清圆锥曲线的定义

70. 在圆锥曲线与直线联立求解时,消元后得到的方程,要注意其二次项系数是否为零?△≥0的限制。(求交点,弦长,中点,斜率,对称存在性问题都在△≥0下进行。)

71. 会用定义求圆锥曲线的焦半径吗?
如:

通径是抛物线的所有焦点弦中最短者;以焦点弦为直径的圆与准线相切。
72. 有关中点弦问题可考虑用“代点法”。

答案:
73. 如何求解“对称”问题?
(1)证明曲线C:F(x,y)=0关于点M(a,b)成中心对称,设A(x,y)为曲线C上任意一点,设A'(x',y')为A关于点M的对称点。

75. 求轨迹方程的常用方法有哪些?注意讨论范围。
(直接法、定义法、转移法、参数法)
76. 对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。

4. 初中数学知识归纳

初中数学宝典,你知道学习数学最重要的是什么吗?

在初中学习数学这们课程的时候很多的学生都是比较烦恼的,因为这们课程是非常难的,并且难点非常多,很多的学生在刚开始学习的时候还可以更得上,但是过一段时间之后就会变得非常的吃力,那么你知道初中数学宝典是什么吗?我们来了解一下吧!

复习知识点

以上就是初中数学宝典的内容,当学习吃力的时候可以先复习一下之前的内容,当然这个时候之前记得笔记就可以用来复习了,这样可以更好的帮助我们学习后期的内容,并且可以改善学习吃力的问题.

5. 小学数学六年级上册知识点总结

我有教案,上面有,你自己找吧,选我吧。
1.用数对表示物体的位置。
2.在方格纸上用数对确定位置。

分数乘整数的意义及计算方法 例1 分数乘整数的意义及计算方法
例2 分数乘整数的简便算法
分数乘分数的意义及计算方法 例3 分数乘分数的意义及计算方法
例4 分数乘分数的简便算法
运算定律、简便计算 例5 分数乘法的运算定律
例6 分数混合运算的简便计算

分数乘整数的意义及计算方法 例1 分数乘整数的意义及计算方法
例2 分数乘整数的简便算法
分数乘分数的意义及计算方法 例3 分数乘分数的意义及计算方法
例4 分数乘分数的简便算法
运算定律、简便计算 例5 分数乘法的运算定律
例6 分数混合运算的简便计算
例1 倒数的意义
例2 倒数的求法

例1 分数除法的意义
例2 分数除法的计算方法
例3
例4 分数四则混合运算例1 己知一个数的几分之几是多少,求这个数的问题
例2 稍复杂的己知一个数的几分之几是多少,求这个数的问题
第一小节 比的意义
第二小节 例1 比的基本性质
第三小节 例2 比的应用

认识圆 例1 用一般的物体画圆
例2 通过折圆的操作活动认识圆
用圆规画圆
例3 认识圆是轴对称图形
圆的周长 探索圆的周长公式、圆周率
例1 圆的周长的计算
圆的面积 探索圆的面积公式
例1 圆的面积计算
例2 圆形的面积计算

6. 初中数学知识点总结

一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

7. 高中数学知识点总结

《高中数学基础知识梳理(数学小飞侠)》网络网盘免费下载

链接:

提取码: i8i2

资源目录

01.集合例题讲解.mp4

01.集合进阶.mp4

02函数的值域.mp4

03函数的定义域与解析式.mp4

04函数的单调性.mp4

04函数的奇偶性.mp4

05指数运算与指数函数.mp4

07对数运算与对数函数.mp4

08幂函数突破.mp4

09函数零点专题.mp4

10含参二次函数与不等式专题.mp4

11二次函数根的分布专题.mp4

12空间几何体.mp4

13点线面位置关系进阶.mp4

14平行关系突破.mp4

15垂直关系突破.mp4

16空间几何关系综合.mp4

17直线方程突破.mp4

18圆的方程突破.mp4

19算法初步.mp4

20算法语句与算法案例.mp4

21数据的收集与频率分布.mp4

22常用统计量与相关关系.mp4

23古典概型概率.mp4

24几何概型概率.mp4

25任意角重难点.mp4

26三角函数定义与诱导公式.mp4

27三角函数图像及性质.mp4

28平面向量几何运算.mp4

29平面向量代数运算.mp4

30.三角恒等变换.mp4

31.三角函数计算专题.mp4

32.正弦定理与余弦定理.mp4

33.等差数列突破.mp4

34.等比数列突破.mp4

35.数列通项公式专题 .mp4

36.数列求和公式专题 .mp4

37.二次不等式与分式不等式.mp4

38.线性规划问题.mp4

39.基本不等式突破.mp4

40.逻辑用语专题.mp4

41.椭圆方程及其几何性质.mp4

42.双曲线方程及其性质.mp4

43.抛物线方程及其性质.mp4

44.直线与圆锥曲线综合.mp4

45.空间向量突破.mp4

46.导数的计算专题.mp4

47.导数的应用.mp4

48.导数的应用(二).mp4

49.定积分与微积分.mp4

50.复数专题.mp4

51.排列组合.mp4

52.二项式定理.mp4

53.随机变量及其变量.mp4

54回归分析与独立性检验.mp4

资源目录

01.集合例题讲解.mp4

01.集合进阶.mp4

02函数的值域.mp4

03函数的定义域与解析式.mp4

04函数的单调性.mp4

04函数的奇偶性.mp4

05指数运算与指数函数.mp4

07对数运算与对数函数.mp4

08幂函数突破.mp4

09函数零点专题.mp4

10含参二次函数与不等式专题.mp4

11二次函数根的分布专题.mp4

12空间几何体.mp4

13点线面位置关系进阶.mp4

14平行关系突破.mp4

15垂直关系突破.mp4

16空间几何关系综合.mp4

17直线方程突破.mp4

18圆的方程突破.mp4

19算法初步.mp4

20算法语句与算法案例.mp4

21数据的收集与频率分布.mp4

22常用统计量与相关关系.mp4

23古典概型概率.mp4

24几何概型概率.mp4

25任意角重难点.mp4

26三角函数定义与诱导公式.mp4

27三角函数图像及性质.mp4

28平面向量几何运算.mp4

29平面向量代数运算.mp4

30.三角恒等变换.mp4

31.三角函数计算专题.mp4

32.正弦定理与余弦定理.mp4

33.等差数列突破.mp4

34.等比数列突破.mp4

35.数列通项公式专题 .mp4

36.数列求和公式专题 .mp4

37.二次不等式与分式不等式.mp4

38.线性规划问题.mp4

39.基本不等式突破.mp4

40.逻辑用语专题.mp4

41.椭圆方程及其几何性质.mp4

42.双曲线方程及其性质.mp4

43.抛物线方程及其性质.mp4

44.直线与圆锥曲线综合.mp4

45.空间向量突破.mp4

46.导数的计算专题.mp4

47.导数的应用.mp4

48.导数的应用(二).mp4

49.定积分与微积分.mp4

50.复数专题.mp4

51.排列组合.mp4

52.二项式定理.mp4

53.随机变量及其变量.mp4

54回归分析与独立性检验.mp4

8. 小学的数学知识点总结归纳

1、数与代数:数的认识、数的运算、式与方程、比和比例。

2、空间与图形:线与角、平面图形、立体图形、图形与变换、图形与位置。

3、统计与可能性:量的计量、统计、可能性。

4、实践与综合应用:探索规律、一般复合应用问题、典型应用问题、分数和百分数应用问题、比和比例问题、解决问题的策略、综合应用问题。

(8)学科知识总结数学篇扩展阅读:

整数

1、整数的意义:…像-4,-3,-2,-1,0,1,2,3,…这样的数叫整数。

2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3,4……叫做自然数。一个物体也没有,用0表示,0也是自然数。

3、计数单位

一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

4、数位

计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5、数的整除:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。

如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。

7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

9、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

解比例的依据是比例的基本性质。

11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y

12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y=k(k一定)或k/x=y

百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

15、要学会把小数化成分数和把分数化成小数的化法。

16、最大公因数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)

17、互质数:公因数只有1的两个数,叫做互质数。

18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公因数)

21、最简分数:分子、分母是互质数的分数,叫做最简分数。

分数计算到最后,得数必须化成最简分数。

个位上是0、2、4、6、8的数,都能被2整,即能用2进行

约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。

22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。

23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)

29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。

30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。

32、一天的时间:一天有24小时,一小时60分,1分60秒