当前位置:首页 » 基础知识 » 九年上数学书二次函数知识点

九年上数学书二次函数知识点

发布时间: 2022-07-13 06:43:04

1. 帮忙列举九年级上+二次函数数学知识清单(概念,公式之类的)有例题的加分!!

http://wenku..com/view/77187b2890c69ec3d5bb75d6.html
http://wenku..com/view/b49eda46af1ffc4ffe47acd1.html
http://wenku..com/view/010954206c85ec3a87c2c563.html

2. 初三二次函数总内容

二次函数 二次函数是最简单的非线性函数之一,而且有着丰富内涵。在中学数学数材中,对二次函数和二次方程,二次三项式及二次不等式以及它们的基本性质,都有深入和反复的讨论与练习。它对近代数学,乃至现代数学,影响深远,为历年来高考数学考试的一项重点考查内容,历久不衰,以它为核心内容的重点试题,也年年有所变化,不仅如此,在全国及各地的高中数学竞赛中,有关二次函数的内容也是非常重要的命题对象。因此,必须透彻熟练地掌握二次函数的基本性质。 学习二次函数的关键是抓住顶点(-b/2a,(4ac-b2)/4a),顶点的由来体现了配方法(y=ax2+bx+c=a(x+b/2a)2+(4ac-b2)/4a);图象的平移归结为顶点的平移(y=ax2→y=a(x-h)2+k);函数的对称性(对称轴x=-b/2a,f (-b/2a+x)=f (-b/2a-x),x∈R),单调区间(-∞,-b/2a),[-b/2a,+∞]、极值((4ac-b2)/4a),判别式(Δb2-4ac)与X轴的位置关系(相交、相切、相离)等,全都与顶点有关。 一、“四个二次型”概述 在河南教育出版社出版的《漫谈ax2+bx+c》一书中(作者翟连林等),有如下一个“框图”: (一元)二次函数
y=ax2+bx+c (a≠0) → a=0 → (一元)一次函数
y=bx+c(b≠0)
↑ ↑
↑ ↑
(一元)二次三项式
ax2+bx+c(a≠0) → a=0 → 一次二项式
bx+c(b≠0)
↓ ↓ ↓ ↓
↓ ↓ ↓ ↓
↓ 一元二次方程
ax2+bx+c=0(a≠0) → a=0 → 一元一次方程
bx+c=0(b≠0) ↓
↓ ↓
一元二次不等式
ax2+bx+c>0或
ax2+bx+c<0(a≠0) → a=0 → 一元一次不等式
bx+c>0或
bx+c<0(b≠0)
观察这个框图,就会发现:在a≠0的条件下,从二次三项式出发,就可派生出一元二次函数,一元二次方程和一元二次不等式来。故将它们合称为“四个二次型”。其中二次三项式ax2+bx+c(a≠0)像一颗心脏一样,支配着整个“四个二次型”的运动脉络。而二次函数y=ax2+bx+c(a≠0),犹如“四个二次型”的首脑或统帅:它的定义域即自变量X的取值范围是全体实数,即n∈R;它的解析式f(x)即是二次三项式ax2+bx+c(a≠0);若y=0,即ax2+bx+c=0(a≠0),就是初中重点研究的一元二次方程;若y>0或y<0,即ax2+bx+c>0或ax2+bx+c<0(a≠0),就是高中一年级重点研究的一元二次不等式,它总揽全局,是“四个二次型”的灵魂。讨论零值的一元二次函数即一元二次方程是研究“四个二次型”的关键所在,它直接影响着两大主干:一元二次方程和一元二次不等式的求解。一元二次方程的根可看作二次函数的零点;一元二次不等式的解集可看作二次函数的正、负值区间。心脏、头脑、关键、主干、一句话,“四个二次型”联系密切,把握它们的相互联系、相互转化、相互利用,便于寻求规律,灵活运用,使学习事半功倍。
二、二次函数的解析式 上面提到,“四个二次型”的心脏是二次三项式:二次函数是通过其解析式来定义的(要特别注意二次项系数a≠0);二次函数的性质是通过其解析式来研究的。因此,掌握二次函数首先要会求解析式,进而才能用解析式去解决更多的问题。 Y=ax2+bx+c(a≠0)中有三个字母系数a、b、c,确定二次函数的解析式就是确定字母a、b、c的取值。三个未知数的确定需要3个独立的条件,其方法是待定系数法,依靠的是方程思想及解方程组。 二次函数有四种待定形式: 1.标准式(定义式):f(x)=ax2+bx+c.(a≠0)
2.顶点式:f(x)=a(x-h)2+k .(a≠0)
3.两根式(零点式):f(x)=a(x-x1)(x-x2). (a≠0)
4.三点式:(见罗增儒《高中数学竞赛辅导》) 过三点A(x1,f (x1))、B(x2,f (x2))、C(x3,f (x3))的二次函数可设为 f (x)=a1(x-x2)(x-x3)+a2(x-x1)(x-x3)+a3(x-x1)(x-x2)把ABC坐标依次代入,即令x=x1,x2,x3,得 f (x1)=a1(x1-x2)(x1-x3),
f (x2)=a2(x2-x1)(x2-x3),
f (x3)=a3(x3-x1)(x3-x2) 解之,得:a1=f (x1)/ (x1-x2)(x1-x3),a2=f (x2)/ (x2-x1)(x2-x3),a3=f (x3)/ (x3-x1)(x3-x2) 从而得二次函数的三点式为:f(x)=[f(x1)/(x1-x2)](x1-x3)(x-x2)(x-x3)+[f(x2)/ (x2-x1)(x2-x3)](x-x1)(x-x3)+[f(x3)/(x3-x1)(x3-x2)](x-x1)(x-x2)根据题目所给的不同条件,灵活地选用上述四种形式求解二次函数解析式,将会得心应手。 例1. 已知二次函数的图象过(-1,-6),(1,-2)和(2,3)三点,求二次函数的解析式。 [解法一]:用标准式 ∵图象过三点(-1,-6)、(1,-2)、(2,3) ∴可设y=f (x)=ax2+bx+c,且有a-b+c=-6①,a+b+c=-2 ②,4a+2b+c=3 ③ 解之得:a=1,b=2,c=-5 ∴所求二次函数为y=x2+2x-5 [解法二]:用三点式 ∵图象过三点(-1,-6),(1,-2),(2,3) ∴可设y=a1(x-x2)(x-x3)+a2(x-x1)(x-x3)+a3(x-x1)(x-x2)=(a1+a2+a3)x2- [a1(x2+x3)+a2(x1+x3)+a3(x1+x2)]x+(a1x2x3+a2x1x3+a3x1x2)计算可得:a1=-6/(-1-1)(-1-2)=-1,
a2=-2/ (1+1)(1-2)=1,
a3=3/ (2+1)(2-1)=1 ∴f (x)=x2+2x-5 例2. 二次函数的图象通过点(2,-5),且它的顶点坐轴为(1,-8),求它的解析式 解:∵它的顶点坐标已知 ∴可设f (x)=a(x-1)2-8 又函数图象通过点(2,-5), ∴a(2-1)2-8=-5 解之,得a=3 故所求的二次函数为:
y=3(x-1)2-8 即:y=f (x)=3x2-6x-5 [评注],以顶点坐标设顶点式a(x-h)2+k,只剩下二次项系数a为待定常数,以另一条件代入得到关于a的一元一次方程求a,这比设标准式要来得简便得多。 例3. 已知二次函数的图象过(-2,0)和(3,0)两点,并且它的顶点的纵坐标为125/4,求它的解析式。 解:∵(-2,0)和(3,0)是X轴上的两点, ∴x1=-2,x2=3 可设y=f(x)=a(x+2)(x-3)
=a(x2-x-6)=a[(x-1/2)2-25/4]
=a(x-1/2)2-25/4a 它的顶点的纵坐标为-25/4a ∴-25/4a=125/4,a=-5 故所求的二次函数为:f (x)=-5(x+2)(x-3)=-5x2+5x+30 [想一想]:本例能否用顶点式来求? 例4. 已知二次函数经过3点A(1/2,3/4)、B(-1,3)、C(2,3),求解析式。 [分析]本例当然可用标准式、三点式求解析式,但解方程组与求a1、a2、a3计算较繁。仔细观察三点坐标特点或画个草图帮助分析,注意到三点的特殊位置,则可引出如下巧解。 [解法一]:顶点式:由二次函数的对称性可知,点B、C所连线段的中垂线x=(-1+2)/2=1/2即为图象的对称轴,从而点A(1/2,3/4)必是二次函数的顶点,故可设顶点式:f(x)=a(x-(1/2))2+(3/4) 把B或C的坐标代入得:f(-1)=a(-3/2)2+(3/4)=(9/4)a+(3/4)=3 解得:a=1 ∴f(x)=(x-(1/2))2+3/4=x2-x+1 [解法二]由B、C的纵坐标相等可知B、C两点是函数y=f (x)与直线y=3的交点,亦即B、C两点的横坐标是方程f (x)=3即f (x)-3=0的两个根故可设零点式为: f (x)-3=a(x+1)(x-2)把A点坐标代入,有f (1/2)-3=a(1/2+1)(1/2-2),即-9/4=-9/4a,a=1 从而f (x)=(x+1)(x-2)+3
=x2-x+1

3. 初中九年级二次函数知识点总结

二次函数:y=ax^2+bx+c (a,b,c是常数,且a不等于0)
a>0开口向上
a<0开口向下
a,b同号,对称轴在y轴左侧,反之,再y轴右侧
|x1-x2|=根号下b^2-4ac除以|a|
与y轴交点为(0,c)
b^2-4ac>0,ax^2+bx+c=0有两个不相等的实根
b^2-4ac<0,ax^2+bx+c=0无实根
b^2-4ac=0,ax^2+bx+c=0有两个相等的实根
对称轴x=-b/2a
顶点(-b/2a,(4ac-b^2)/4a)
顶点式y=a(x+b/2a)^2+(4ac-b^2)/4a
函数向左移动d(d>0)个单位,解析式为y=a(x+b/2a+d)^2+(4ac-b^2)/4a,向右就是减
函数向上移动d(d>0)个单位,解析式为y=a(x+b/2a)^2+(4ac-b^2)/4a+d,向下就是减
当a>0时,开口向上,抛物线在y轴的上方(顶点在x轴上),并向上无限延伸;当a<0时,开口向下,抛物线在x轴下方(顶点在x轴上),并向下无限延伸。|a|越大,开口越小;|a|越小,开口越大.
4.画抛物线y=ax2时,应先列表,再描点,最后连线。列表选取自变量x值时常以0为中心,选取便于计算、描点的整数值,描点连线时一定要用光滑曲线连接,并注意变化趋势。
二次函数解析式的几种形式
(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0).
(2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0).
(3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.
说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点.
(2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和
x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2).
求抛物线的顶点、对称轴、最值的方法
①配方法:将解析式化为y=a(x-h)2+k的形式,顶点坐标(h,k),对称轴为直线x=h,若a>0,y有最小值,当x=h时,y最小值=k,若a<0,y有最大值,当x=h时,y最大值=k.
②公式法:直接利用顶点坐标公式(- , ),求其顶点;对称轴是直线x=- ,若a>0,y有最小值,当x=- 时,y最小值= ,若a<0,y有最大值,当x=- 时,y最大值= .
6.二次函数y=ax2+bx+c的图像的画法
因为二次函数的图像是抛物线,是轴对称图形,所以作图时常用简化的描点法和五点法,其步骤是:
(1)先找出顶点坐标,画出对称轴;
(2)找出抛物线上关于对称轴的四个点(如与坐标轴的交点等);
(3)把上述五个点按从左到右的顺序用平滑曲线连结起来.23|评论(6)
2010-11-22 19:50不莱磊磊|四级1、二次函数的定义:如果y=ax2+bx+c(a、b、c为常数,a≠0),那么y叫x的二次函数.
2、二次函数的图象:二次函数y=ax2+bx+c的图象是一条抛物线.
3、二次函数的解析式有下列三种形式:
(1)一般式:y=ax2+bx+c(a≠0);
(2)顶点式:y=a(x-h)2+k(a≠0);
(3)交点式:y=a(x-x1)(x-x2) (a≠0),这里x1,x2是抛物线与x轴两个交点的横坐标.
确定二次函数的解析式一般要三个独立条件,灵活地选用不同方法求出二次函数的解析式是解与二次函数相关问题的关键.
4、抛物线y=ax2+bx+c中系数a、b、c的几何意义
抛物线y=ax2+bx+c的对称轴是,顶点坐标是,其中a的符号决定抛物线的开口方向.
a>0,抛物线开口向上,a<0,抛物线开口向下;a,b同号时,对称轴在y轴的左边;a,b异号时,对称轴在y轴的右边;c确定抛物线与y轴的交点(0,c)在x轴上方还是下方.
5、抛物线顶点式y=a(x-h)2+k(a≠0)的特点
(1)a>0,开口向上;a<0,开口向下;
(2)x=h为抛物线对称轴;
(3)顶点坐标为(h,k).
依顶点式,可以很快地求出二次函数的最值.
当a>0时,函数在x=h处取最小值y=k;
当a<0时,函数在x=h处取最大值y=k.
6、抛物线y=a(x-h)2+k与y=ax2的联系与区别
抛物线y=a(x-h)2+k与y=ax2的形状相同,位置不同.前者是后者通过“平移”而得到.
要想弄清抛物线的平移情况,首先将解析式化为顶点式.
7、抛物线y=ax2+bx+c与x轴的两个交点为A、B,且方程ax2+bx+c=0的两根为x1,x2,则有A(x1,0),B(x2,0).

4. 初三人教数学二次函数解析

一般式y=ax^2+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,(4ac-b^2)/4a^2)
把三个点代入式子得出一个三元一次方程组,就能解出a、b、c的值。
顶点式
y=a(x+h)^2+k(a≠0,a、h、k为常数),顶点坐标为(-h,k),对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax^2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)^2+2,把(3,10)代入上式,解得y=2(x-1)^2+2。
交点式
y=a(x-x₁)(x-x₂) (a≠0) [仅限于与x轴即y=0有交点A(x₁,0)和 B(x₂,0)的抛物线,即b^2-4ac≥0] .
已知抛物线与x轴即y=0有交点A(x₁,0)和 B(x₂,0),我们可设y=a(x-x₁)(x-x₂),然后把第三点代入x、y中便可求出a。
由一般式变为交点式的步骤:

二次函数(16张)
∵X₁+x₂=-b/a x1·x₂=c/a
∴y=ax^2+bx+c
=a(x₂+b/ax+c/a)
=a[﹙x₂-(x₁+x₂)x+x₁x₂]=a(x-x₁)(x-x₂)
重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;a<0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。
其他知识介绍:牛顿插值公式
y=(y₃(x-x₁)(x-x₂))/((x₃-x₁)(x₃-x₂)+(y₂(x-x₁)(x-x₃))/((x₂-x₁)(x₂-x₃)+(y₁(x-x₂)(x-x₃))/((x₁-x₂)(x₁-x₃)。由此可引导出交点式的系数a=y₁/(x₁·x₂)(y₁为截距)二次函数表达式的右边通常为二次三项式。
二次函数图像与X轴
交点的情况
当△=b^2-4ac>0时,函数图像与x轴有两个交点。
当△=b^2-4ac=0时,函数图像与x轴只有一个交点。
当△=b^2-4ac<0时,函数图像与x轴没有交点。
二次函数图像
在平面直角坐标系中作出二次函数y=ax^2+bx+c的图像,可以看出,二次函数的图像是一条永无止境的抛物线。 如果所画图形准确无误,那么二次函数图像将是由一般式平移得到的。
注意:草图要有 :
1. 本身图像,旁边注明函数。2. 画出对称轴,并注明直线X=什么 (X= -b/2a)3. 与X轴交点坐标 (x1,y1);(x2, y2),与Y轴交点坐标(0,c),
顶点坐标(-b/2a, (4ac-b^2/4a).
轴对称
二次函数图像是轴对称图形。对称轴为直线x=-b/2a
对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。
特别地,当x=0时,二次函数图像的对称轴是y轴(即直线x=0)。
a,b同号,对称轴在y轴左侧
b=0,对称轴是y轴
a,b异号,对称轴在y轴右侧
顶点
二次函数图像有一个顶点P,坐标为P ( h,k )
当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)²+k。
h=-b/2a, k=(4ac-b^2)/4a。
开口
二次项系数a决定二次函数图像的开口方向和大小。
当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。
|a|越大,则二次函数图像的开口越小。
决定对称轴位置的因素
一次项系数b和二次项系数a共同决定对称轴的位置。
当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号
当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
可简单记忆为同左异右,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0 ),对称轴在y轴右。
事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。
决定与y轴交点的因素
常数项c决定二次函数图像与y轴交点。
二次函数图像与y轴交于(0,C)
注意:顶点坐标为(h,k), 与y轴交于(0,C)。
与x轴交点个数
a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。
k=0时,二次函数图像与x轴只有1个交点。
a<0;k<0或a>0,k>0时,二次函数图像与X轴无交点。
当a>0时,函数在x=h处取得最小值ymin=k,在x<h范围内是减函数,在x>h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y>k
当a<0时,函数在x=h处取得最大值ymax=k,在x>h范围内是增函数,在x<h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下,函数的值域是y<k
当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数
二次函数的性质
定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)
奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数 。
周期性:无
解析式:
①y=ax^2+bx+c[一般式]
⑴a≠0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b²)/4a);
⑷Δ=b2-4ac,
Δ>0,图象与x轴交于两点:
([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ<0,图象与x轴无交点;
特殊地,Δ=4,顶点与两零点围成的三角形为等腰直角三角形;Δ=12,顶点与两零点围成的三角形为等边三角形。
②y=a(x-h)2+k[顶点式]
此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a
③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)
对称轴X=(X1+X2)/2 当a>0 且X≧(X1+X2)/2时,Y随X的增大而增大,当a>0且X≦(X1+X2)/2时Y随X
的增大而减小
此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连
用)。
交点式是Y=A(X-X1)(X-X2) 知道两个x轴交点和另一个点坐标设交点式。两交点X值就是相应X1 X2值。
增减性
当a>0且y在对称轴右侧时,y随x增大而增大,y在对称轴左侧则相反
当a<0且y在对称轴右侧时,y随x增大而减小,y在对称轴左侧则相反
两个关联函数图像
对称关系
对于一般式:
①y=ax^2+bx+c与y=ax^2-bx+c两图像关于y轴对称
②y=ax^2+bx+c与y=-ax^2-bx-c两图像关于x轴对称
③y=ax^2+bx+c与y=-ax^2+bx+c-2b^2*|a|/4a^2关于顶点对称
④y=ax^2+bx+c与y=-ax^2+bx-c关于原点对称。
对于顶点式:
①y=a(x-h)^2+k与y=a(x+h)^2+k两图像关于y轴对称,即顶点(h,k)和(-h,k)关于y轴对称,横坐标、纵坐标都相同。
②y=a(x-h)^2+k与y=-a(x-h)^2-k两图像关于x轴对称,即顶点(h,k)和(h,-k)关于y轴对称,横坐标、纵坐标都相反。
③y=a(x-h)^2+k与y=-a(x-h)^2+k关于顶点对称,即顶点(h,k)和(h,k)相同,开口方向相反。
④y=a(x-h)^2+k与y=-a(x+h)^2-k关于原点对称,即顶点(h,k)和(-h,-k)关于原点对称,横坐标、纵坐标都相反。
(其实①③④就是对f(x)来说f(-x),-f(x),-f(-x)的情况)
编辑本段与一元二次方程的关系
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表: 解析式 顶点坐标 对 称 轴 y=ax^2(0,0) x=0 y=ax^2
+K (0,K) x=0
y=a(x-h)^2(h,0) x=h
y=a(x-h)^2+k (h,k) x=h
y=ax^2+bx+c (-b/2a,(4ac-b^2);/4a)x=-b/2a
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到。
当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k(h>0,k>0)的图象
当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位,就可得到y=a(x-h)^2+k(h>0,k<0)的图象
当h<0,k>0时,将抛物线y=ax^2向左平行移动|h|个单位,再向上移动k个单位,就可得到y=a(x+h)^2+k(h<0,k>0)的图象
当h<0,k<0时,将抛物线y=ax^2向左平行移动|h|个单位,再向下移动|k|个单位,就可得到y=a(x+h)^2+k(h<0,k<0)的图象
在向上或向下。向左或向右平移抛物线时,可以简记为“上加下减,左加右减”。
因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了。这给画图象提供了方便。
2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a)。
3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大。若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小。
4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax^2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x1-x2| =√△/∣a∣(a绝对值分之根号下△)另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点的横坐标)
当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。
5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a。
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0)。
(2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0)。
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a≠0)。

5. 初三数学二次函数的

设解析式与x轴交与A(x1,0),B(x2,0)
显然x=0时,y=q=-1
x^2+px+q=0时
x1+x2=-p/2,x1x2=q=-1
故x1,x2一正一负,不妨设x1为正,x2为负
则AB=x1-x2
(x1-x2)^2=(x1+x2)^2-4x1x2=p^2/4+4
ABC的面积应该为:1/2CO*AB=5/4
CO=1 故AB=x1-x2=5/2
两边平方得(x1-x2)^2=p^2/4+4=25/4
p^2=9 p=-3
故y=x^2-3x-1=0

6. 数学二次函数有关知识点

抛物线:一般式 ,顶点式,交点式,开口,顶点,极大,极小值,抛物线和坐标轴的交点,抛物线与一元二次方程的关系,抛物线的平移以及对称。就这些吧?

7. 九年级上学期数学二次函数

1.【题目】某商场将进货单……系式。

【解答】

2.【题目】已知一条抛物线的……么关系?并指明其定点坐标

【解答】解:(1)∵抛物线的形状开口方向对称轴与抛物线y=½x²相同
∴设此抛物线的解析式是y=½x²+c,
将点(1, 1)代入,得
1/2+c=1
c=1/2
∴抛物线的解析式是y=½x²+½,
(2)*抛物线y=½x²+½是由y=½x²向上平移½个单位得到的.它的顶点坐标是(0, ½).

8. 九年级数学二次函数

4> A a>0 b=0
5> D 同时满足b>0(一次函数不过第三象限,抛物线对称轴在Y轴左侧) a<0 (一次函数单调递减,抛物线开口向下)
7> D 对称轴x=1开口向下 只要x<1就都成立 所以选x<-1
8> C △=(m-4)方 m=4 △=0 , m≠4 △>0

24> 对称轴所在直线 x=-b/2a=2 a=1 b=-4
根号(△)=根号(b方-4ac) 为抛物线于x轴交点之间的距离
顶点P(-b/2ac,(4ac-b方)/4a)

S△APB=1/2 * 根号(b方-4ac) * (4ac-b方)/4a
=1/2 *根号(16-4c) * (4c-16)/4
=((1/2)* 根号(16-4c))三次方 ≥27

根号(16-4c)≥6
16-4c≥36
c≤5 b=-4

25>
1. [7.5*(260-240)/10]+45=60
2.3.
Y={[7.5*(260-x)/10]+45}(x-100)(这是月利润y与单价x的关系)
=-0.75x方+195x-19500
函数图像开口向下 顶点为Y取最大值 即x=-b/2a=130,Ymax=18525
当售价为130元/吨 时 利润最大为18525元

P={(7.5*(260-x)/10]+45}x=-0.75x方+240x (这是月销售额p与单价x的关系)
x=-b/2a=160, Pmax=19200 所以当x=130时 p取不到最大值
所以当利润最大时 销售额不是最大
那么小静就是错的

打得我累死了 - -
不好意思LZ 我用了点时间 没看见你叫我~
呵呵!