当前位置:首页 » 基础知识 » 高中数学函数的知识框架
扩展阅读
大学日语基础知识考什么 2024-11-08 18:04:39

高中数学函数的知识框架

发布时间: 2022-07-13 05:06:14

❶ 高中数学的知识体系框架

数 学 公 理体系十九世纪末到二十世纪初,数学已发展成为一门庞大的学科,经典的数学部门已经建立起完整的体系:数论、代数学、几何学、数学分析。数学家开始探访一些基础的问题,例如什么是数?什么是曲线?什么是积分?什么是函数?……另外,怎样处理这些概念和体系也是问题。经典的方法一共有两类。一类是老的公理化的方法,不过非欧几何学的发展,各种几何学的发展暴露出它的许多毛病;另一类是构造方法或生成方法,这个办法往往有局限性,许多问题的解决不能靠构造。尤其是涉及无穷的许多问题往往靠逻辑、靠反证法、甚至靠直观。但是,哪些靠得住,哪些靠不住,不加分析也是无法断定的。对于基础概念的分析研究产生了一系列新领域—抽象代数学、拓扑学、泛函分析、测度论、积分论。而在方法上的完善,则是新公理化方法的建立,这是希尔伯特在1899年首先在《几何学基础》中做出的。

❷ 高中数学需要初中的哪些基础

高中数学怎么学?高中数学难学吗?

数学这个科目,不管是对于文科学生还是对于理科学生.都是比较重要的,因为他是三大主课之一,它占的分值比较大.要是数学学不好,你可能会影响到物理化学的学习,因为那些学科都是要通过计算.然而,这些计算也都是在数学里面.高中数学怎么学?有哪些好的方法?

老师让孩子上黑板做题

数学担负着培养孩子的运算能力,还有孩子应用知识的能力.高中数学怎样学?还是要看学生对数学的理解程度.学生要有自己的学习方法,你不光要掌握老师上课的内容,在下课之后还要及时巩固,加深.

❸ 高中数学课程中的“函数”的结构脉络

你好,LZ
高中阶段的函数是很重要的,我认为高中阶段的函数把函数之间这样的依赖关系作为主线的,高中第一册开始就开始学习,然后我们把它抽象为映射这种概念,另外在高中阶段,还加强了对函数图形的认识,对函数的认识,一是从代数开始的,讨论函数的单调性,奇偶性,周期性,还有从他的应用开始。主要涉及到函数的建模,对函数的认识,主要从四个重要的纬度,一是概念的纬度,二是一些初等函数及其数学模型,三是研究函数的基本方法,1是代数法2 是微积分方法,四是不断强化的函数应用: 即把函数作为一种工具来解决问题,我们用函数研究一元一次不等式,一元二次不等式,线性规划问题,研究随机变量问题,算法问题及其中非常重要的所谓循环变量,那么这个变量如何刻画?所以用函数来研究数学内部问题,接着就是函数的应用,第一层次就是把实际问题转化成数学函数模型,就是用函数语言来描述实际问题,另外就是知道常见的数学模型,例如有或者没有复利的 的贷款问题,存款问题。三就是让学生经历数学建模这个基本的过程。
另外外高中数学应该注意研究函数以下几个定位:第一我们研究的函数都是一些连续的、光滑的、可导的函数,第二,我们只考虑函数的形状,第三就是让学生弄清函数的周期

❹ 高中数学知识结构框架图

原发布者:吕明龙88
高中数学知识结构框图必修一:第一章集合第三章基本初等函数(Ⅰ)必修二:第一章立体几何初步第二章平面解析几何初步必修三:第一章算法初步第二章统计第三章概率必修四:第一章基本初等函数(II)第二章平面向量第三章三角恒等变换必修五:第一章解三角形第二章数列第三章不等式选修2-1:第一章常用逻辑用语第二章圆锥曲线与方程第三章空间向量与立体几何选修2-2:第一章导数及其应用第二章推理与证明第三章数系的扩充与复数选修2-3:第一章计数原理第二章概率第三章统计案例

❺ 如何学好高中数学函数

一、教给学生阅读课本的方法
1.对于识字不多,思考能力有限的低年级的学生来说,应采取在老师指导下讲解和阅读相结合的办法。如对刚入学的小朋友,首先要帮助他们初步了解数学课的特点,知道数学课要学习哪些知识,看数学课本的插图时要看清、数准图上各种东西的个数。接着教他们学会有顺序地阅读教科书,即要从上到下,从左往右地看;教学10以内数的认知看主题图时,要学会先整体后部分地看。又如,低年级教材中的知识是用各种图示表示的,教师要把指导重点放在帮助学生掌握看图方法上,努力使他们做到四会:一要会看例题插图,能比较准确地进述图意;二要会看标有思维过程的算式,看懂计算方法;三要会看应用题的图示,能根据图示理解题意,搞清数量之间的关系、思考解答方法;四要会看多种练习形式,懂得练习题的要求。
2.对于已积累了一定的知识和具有一定能力的中年级学生来说,教师可采用半工半读半扶半放的方式进行培养。如教师既可先讲后读,具体指导学生阅读课本的方法;也可骗制阅读提纲,让学生带着提纲阅读课本,寻找答案,帮助学生理解教材。
3.对于具有一定自学能力的高年级学生来说,则可采取课前预习、启发引导、独立阅读的办法。如指导预习时,教师对学生要有明确的要求,要有预习的范围,要提出必要的思考题或实验作业,要检查预习情况。课堂上教师可以放手让学生去读读、讲讲、论论、练练的方式进行自学与讨论,要求他们在把握知识的基础上理清知识体系,进一步提高认知水平。
二、教给学生科学的记忆方法
1.理解记忆法。就是通过学生的积极思维,依据事物的内在联系,在理解的基础上去记忆的方法。如:什么叫梯形。首先让学生通过认真观察,理解“只有一组对边”是什么意思,若把“只”字去掉又会怎样。通过积极思考,学生认知到“只有一组对边平行”就是四条边中相对的两条边为一组,其中一组平行,另一组不平行。这样学生在理解的基础上记忆梯形这个概念就容易了。
2.规律记忆法。就是寻找事物内在规律,抓住其规律帮助记忆的方法。数学知识是有规律的,只要引导学生掌握其规律,就可以进行有效记忆。例如:记忆长度、面积、体积单位进率。因为长度单位相邻之间的进率是10,面积单位相邻之间的进率是100,体积单位之间的进率是1000。掌握了这个规律记忆就比较容易。
3.形象记忆法。就是借助事物的形象或表象进行记忆的方法。小学生的思维以形象思维为主,逐步向抽象思维发展。在教学中,教师讲课时要注意生动、形象,以唤醒学生对事物的表象,进行形象记忆。例如,一年级数的认知教学时,老师把数与某些实物形象记忆:把“2”比作小鸭子、“3”比作耳朵等。
4.比较记忆法。这是把相似、相近的数学材科学的进行对比,把握它们的相同点与不同点,加强记忆的一种方法。例如,整除与除尽,质数与互质数等,在学生理解后,引导学生进行比较记忆。
5.类比联想记忆法。是指对某一事物的感知或回忆引起性质上相似的事物的回忆的方法。例如,让学生记忆分数的基本性质时,引导学生联想除法的商不变性质和除法与分数的关系,那么分数的基本性质就不难记忆了。
6.归纳记忆法。是把具有内在联系的知识集中起来,组成系统,形成网络的记忆方法。你如,有关面积知识,学生是跨越几个年级才全部学完。这些图形有特征上的不同,也有公式上的区别。零敲碎打获得的知识,必须给予系统上的整理,才能保证这部分知识本身固有的整体性。可以通过下面网状图形,把这些图形的内在联系揭示出来,这样有利于学生进行系统记忆。
三、教给学生复习的方法
复习就是把学过的数学知识再进行学习,以达到深入理解、融会贯通、精练概括、牢固掌握的目的。学生对数学知识的学习,是包括一堂堂数学课累积起来的,因而所获得的知识往往是零碎的和片面的,时间一长,就会出现知识链条的断裂现象。基于这一点,单元复习和总复习都是很重要的。小学数学教学中,复习的方法主要有以下几点:
1.概括复习。学生每学完一个小单元或一个大单元,就组织他们对于知识体系进行一次再概括,理出纲目,记住轮廓,列出重点,帮助他们掌握单元的主要内容。
2.分类复习。引导学生把学过的知识和技能进行分类整理、分类比较,以加强知识的内在联系和知识的深度、广度,帮助学生加深理解与记忆。
3.区别复习。把学过的相似的概念、规则等,如以区别、比较,掌握知识的特征。总之,一方面,复习要在理解教材的基础上,沟通知识间的内在联系,找出重点、关键,然后提炼概况,组成一个知识系统,从而形成或发展扩大认知结构;另一方面,通过复习,不断地对知识本身或从数学思想方法角度进行提高与精炼,是有利于能力的发展与提高的。
四、教会学生整理与归纳的方法
整理知识是一项主要的学习方法。小学数学知识,由于学生认识能力的原因,往往分若干层次逐渐完成。一节课后、一个单元后或一个学期后,需要对所学知识进行整理与归纳,形成良好的认知结构,便于记忆和运用。
1.把知识串成“块”,形成知识网络。
小学几何初步知识涉及到五线(直线、线段、射线、垂线、平行线)、六角(锐角、直角、钝角、平角、周角、圆心角)、七形(长方形、正方形、三角形、平行四边形、梯形、圆形、扇形)五体(长方体、正方体等)教完几何后,把七种平面图形组成一个知识网络。
2.系统整理成表,便于记忆运用。按照数学知识的科学体系和小学生的认识规律,小学几何初步知识分散在小学各册实现教材中。在总复习中,教师应避免罗列和重复以往知识,而应恢复几何初步知识原有的知识体系和法则,按点、线(角)、面、体四大部分知识认真系统地归纳整理成表,使之在学生头脑中条理化、系统化、网络化,便于记忆与运用。
五、教给学生知识迁移的方法
迁移是指已获得知识、技能乃至方法和态度对学习新知识新技能的影响。先前学习对后继学习起积极、促进作用的,纠正迁移,反之纠负迁移。人们在解决新课题时,总是利用已有的知识技能去寻找解决问题的方法。数学是一门逻辑性、严密性极强的学科,它的知识系统性强,前面的知识是后面的基础,后面的知识是前面知识的延伸与发展。所以教师必须紧紧抓住前后知识的内在联系,教给学生知识迁移的方法。

❻ 高中数学都需要哪些初中数学基础知识

初中数学宝典,你知道学习数学最重要的是什么吗?

在初中学习数学这们课程的时候很多的学生都是比较烦恼的,因为这们课程是非常难的,并且难点非常多,很多的学生在刚开始学习的时候还可以更得上,但是过一段时间之后就会变得非常的吃力,那么你知道初中数学宝典是什么吗?我们来了解一下吧!

复习知识点

以上就是初中数学宝典的内容,当学习吃力的时候可以先复习一下之前的内容,当然这个时候之前记得笔记就可以用来复习了,这样可以更好的帮助我们学习后期的内容,并且可以改善学习吃力的问题.

❼ 函数的概念知识框架

函数(function)在数学中为两不为空集的集合间的一种对应关系:输入值集合中的每项元素皆能对应唯一一项输出值集合中的元素。 其定义通常分为传统定义和近代定义,前者从运动变化的观点出发,而后者从集合、映射的观点出发。其近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示。函数概念含有三个要素:定义域A、值域C和对应法则f。
首先要理解,函数是发生在集合之间的一种对应关系。然后,要理解发生在A、B之间的函数关系不止且不止一个。最后,要重点理解函数的三要素。

函数的对应法则通常用解析式表示,但大量的函数关系是无法用解析式表示的,可以用图像、表格及其他形式表示。

概念
在一个变化过程中,发生变化的量叫变量(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。

自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。

因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。

函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值。

映射定义
设A和B是两个非空集合,如果按照某种对应关系,对于集合A中的任何一个元素a,在集合B中都存在唯一的一个元素b与之对应,那么,这样的对应(包括集合A,B,以及集合A到集合B的对应关系f)叫做集合A到集合B的映射(Mapping),记作。其中,b称为a在映射f下的象,记作:; a称为b关于映射f的原象。集合A中所有元素的象的集合记作f(A)。

❽ 高中数学知识整个体系脉络或框架

高考数学基础知识汇总
第一部分 集合
(1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;
(2) 注意:讨论的时候不要遗忘了 的情况。
(3)
第二部分 函数与导数
1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。
2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;
⑤换元法 ;⑥利用均值不等式 ; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性( 、 、 等);⑨导数法
3.复合函数的有关问题
(1)复合函数定义域求法:
① 若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:
①首先将原函数 分解为基本函数:内函数 与外函数 ;
②分别研究内、外函数在各自定义域内的单调性;
③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
注意:外函数 的定义域是内函数 的值域。
4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5.函数的奇偶性
⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;
⑵ 是奇函数 ;
⑶ 是偶函数 ;
⑷奇函数 在原点有定义,则 ;
⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;
(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;
6.函数的单调性
⑴单调性的定义:
① 在区间 上是增函数 当 时有 ;
② 在区间 上是减函数 当 时有 ;
⑵单调性的判定
1 定义法:
注意:一般要将式子 化为几个因式作积或作商的形式,以利于判断符号;
②导数法(见导数部分);
③复合函数法(见2 (2));
④图像法。
注:证明单调性主要用定义法和导数法。
7.函数的周期性
(1)周期性的定义:
对定义域内的任意 ,若有 (其中 为非零常数),则称函数 为周期函数, 为它的一个周期。
所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。
(2)三角函数的周期
① ;② ;③ ;
④ ;⑤ ;
⑶函数周期的判定
①定义法(试值) ②图像法 ③公式法(利用(2)中结论)
⑷与周期有关的结论
① 或 的周期为 ;
② 的图象关于点 中心对称 周期为2 ;
③ 的图象关于直线 轴对称 周期为2 ;
④ 的图象关于点 中心对称,直线 轴对称 周期为4 ;
8.基本初等函数的图像与性质
⑴幂函数: ( ;⑵指数函数: ;
⑶对数函数: ;⑷正弦函数: ;
⑸余弦函数: ;(6)正切函数: ;⑺一元二次函数: ;
⑻其它常用函数:
1 正比例函数: ;②反比例函数: ;特别的
2 函数 ;
9.二次函数:
⑴解析式:
①一般式: ;②顶点式: , 为顶点;
③零点式: 。
⑵二次函数问题解决需考虑的因素:
①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。
⑶二次函数问题解决方法:①数形结合;②分类讨论。
10.函数图象:
⑴图象作法 :①描点法 (特别注意三角函数的五点作图)②图象变换法③导数法
⑵图象变换:
1 平移变换:ⅰ ,2 ———“正左负右”
ⅱ ———“正上负下”;
3 伸缩变换:
ⅰ , ( ———纵坐标不变,横坐标伸长为原来的 倍;
ⅱ , ( ———横坐标不变,纵坐标伸长为原来的 倍;
4 对称变换:ⅰ ;ⅱ ;
ⅲ ; ⅳ ;
5 翻转变换:
ⅰ ———右不动,右向左翻( 在 左侧图象去掉);
ⅱ ———上不动,下向上翻(| |在 下面无图象);
11.函数图象(曲线)对称性的证明
(1)证明函数 图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明函数 与 图象的对称性,即证明 图象上任意点关于对称中心(对称轴)的对称点在 的图象上,反之亦然;
注:
①曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
②曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2a-x, y)=0;
③曲线C1:f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
④f(a+x)=f(b-x) (x∈R) y=f(x)图像关于直线x= 对称;
特别地:f(a+x)=f(a-x) (x∈R) y=f(x)图像关于直线x=a对称;
⑤函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;
12.函数零点的求法:
⑴直接法(求 的根);⑵图象法;⑶二分法.
13.导数
⑴导数定义:f(x)在点x0处的导数记作 ;
⑵常见函数的导数公式: ① ;② ;③ ;
④ ;⑤ ;⑥ ;⑦ ;
⑧ 。
⑶导数的四则运算法则:
⑷(理科)复合函数的导数:
⑸导数的应用:
①利用导数求切线:注意:ⅰ所给点是切点吗?ⅱ所求的是“在”还是“过”该点的切线?
②利用导数判断函数单调性:
ⅰ 是增函数;ⅱ 为减函数;
ⅲ 为常数;
③利用导数求极值:ⅰ求导数 ;ⅱ求方程 的根;ⅲ列表得极值。
④利用导数最大值与最小值:ⅰ求的极值;ⅱ求区间端点值(如果有);ⅲ得最值。
14.(理科)定积分
⑴定积分的定义:
⑵定积分的性质:① ( 常数);
② ;
③ (其中 。
⑶微积分基本定理(牛顿—莱布尼兹公式):
⑷定积分的应用:①求曲边梯形的面积: ;
3 求变速直线运动的路程: ;③求变力做功: 。
第三部分 三角函数、三角恒等变换与解三角形
1.⑴角度制与弧度制的互化: 弧度 , 弧度, 弧度
⑵弧长公式: ;扇形面积公式: 。
2.三角函数定义:角 中边上任意一点 为 ,设 则:

3.三角函数符号规律:一全正,二正弦,三两切,四余弦;
4.诱导公式记忆规律:“函数名不(改)变,符号看象限”;
5.⑴ 对称轴: ;对称中心: ;
⑵ 对称轴: ;对称中心: ;
6.同角三角函数的基本关系: ;

7.两角和与差的正弦、余弦、正切公式:①

② ③ 。

8.二倍角公式:① ;
② ;③ 。

9.正、余弦定理:
⑴正弦定理: ( 是 外接圆直径 )
注:① ;② ;③ 。
⑵余弦定理: 等三个;注: 等三个。
10。几个公式:
⑴三角形面积公式: ;
⑵内切圆半径r= ;外接圆直径2R=
11.已知 时三角形解的个数的判定:

第四部分 立体几何
1.三视图与直观图:注:原图形与直观图面积之比为 。
2.表(侧)面积与体积公式:
⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧= ;③体积:V=S底h
⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧= ;③体积:V= S底h:
⑶台体:①表面积:S=S侧+S上底S下底;②侧面积:S侧= ;③体积:V= (S+ )h;
⑷球体:①表面积:S= ;②体积:V= 。
3.位置关系的证明(主要方法):
⑴直线与直线平行:①公理4;②线面平行的性质定理;③面面平行的性质定理。
⑵直线与平面平行:①线面平行的判定定理;②面面平行 线面平行。
⑶平面与平面平行:①面面平行的判定定理及推论;②垂直于同一直线的两平面平行。
⑷直线与平面垂直:①直线与平面垂直的判定定理;②面面垂直的性质定理。
⑸平面与平面垂直:①定义---两平面所成二面角为直角;②面面垂直的判定定理。
注:理科还可用向量法。
4.求角:(步骤-------Ⅰ。找或作角;Ⅱ。求角)
⑴异面直线所成角的求法:
1 平移法:平移直线,2 构造三角形;
3 ②补形法:补成正方体、平行六面体、长方体等,4 发现两条异面直线间的关系。
注:理科还可用向量法,转化为两直线方向向量的夹角。
⑵直线与平面所成的角:
①直接法(利用线面角定义);②先求斜线上的点到平面距离h,与斜线段长度作比,得sin 。
注:理科还可用向量法,转化为直线的方向向量与平面法向量的夹角。
⑶二面角的求法:
①定义法:在二面角的棱上取一点(特殊点),作出平面角,再求解;
②三垂线法:由一个半面内一点作(或找)到另一个半平面的垂线,用三垂线定理或逆定理作出二面角的平面角,再求解;
③射影法:利用面积射影公式: ,其中 为平面角的大小;
注:对于没有给出棱的二面角,应先作出棱,然后再选用上述方法;
理科还可用向量法,转化为两个班平面法向量的夹角。
5.求距离:(步骤-------Ⅰ。找或作垂线段;Ⅱ。求距离)
⑴两异面直线间的距离:一般先作出公垂线段,再进行计算;
⑵点到直线的距离:一般用三垂线定理作出垂线段,再求解;
⑶点到平面的距离:
①垂面法:借助面面垂直的性质作垂线段(确定已知面的垂面是关键),再求解;
5 等体积法;
理科还可用向量法: 。
⑷球面距离:(步骤)
(Ⅰ)求线段AB的长;(Ⅱ)求球心角∠AOB的弧度数;(Ⅲ)求劣弧AB的长。
6.结论:
⑴从一点O出发的三条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面∠BOC上的射影在∠BOC的平分线上;
⑵立平斜公式(最小角定理公式):
⑶正棱锥的各侧面与底面所成的角相等,记为 ,则S侧cos =S底;
⑷长方体的性质
①长方体体对角线与过同一顶点的三条棱所成的角分别为 则:cos2 +cos2 +cos2 =1;sin2 +sin2 +sin2 =2 。
②长方体体对角线与过同一顶点的三侧面所成的角分别为 则有cos2 +cos2 +cos2 =2;sin2 +sin2 +sin2 =1 。
⑸正四面体的性质:设棱长为 ,则正四面体的:
1 高: ;②对棱间距离: ;③相邻两面所成角余弦值: ;④内切2 球半径: ;外接球半径: ;
第五部分 直线与圆
1.直线方程
⑴点斜式: ;⑵斜截式: ;⑶截距式: ;
⑷两点式: ;⑸一般式: ,(A,B不全为0)。
(直线的方向向量:( ,法向量(
2.求解线性规划问题的步骤是:
(1)列约束条件;(2)作可行域,写目标函数;(3)确定目标函数的最优解。
3.两条直线的位置关系:

4.直线系

5.几个公式
⑴设A(x1,y1)、B(x2,y2)、C(x3,y3),⊿ABC的重心G:( );
⑵点P(x0,y0)到直线Ax+By+C=0的距离: ;
⑶两条平行线Ax+By+C1=0与 Ax+By+C2=0的距离是 ;
6.圆的方程:
⑴标准方程:① ;② 。
⑵一般方程: (
注:Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆 A=C≠0且B=0且D2+E2-4AF>0;
7.圆的方程的求法:⑴待定系数法;⑵几何法;⑶圆系法。
8.圆系:
⑴ ;
注:当 时表示两圆交线。
⑵ 。
9.点、直线与圆的位置关系:(主要掌握几何法)
⑴点与圆的位置关系:( 表示点到圆心的距离)
① 点在圆上;② 点在圆内;③ 点在圆外。
⑵直线与圆的位置关系:( 表示圆心到直线的距离)
① 相切;② 相交;③ 相离。
⑶圆与圆的位置关系:( 表示圆心距, 表示两圆半径,且 )
① 相离;② 外切;③ 相交;
④ 内切;⑤ 内含。
10.与圆有关的结论:
⑴过圆x2+y2=r2上的点M(x0,y0)的切线方程为:x0x+y0y=r2;
过圆(x-a)2+(y-b)2=r2上的点M(x0,y0)的切线方程为:(x0-a)(x-a)+(y0-b)(y-b)=r2;
⑵以A(x1,y2)、B(x2,y2)为直径的圆的方程:(x-x1)(x-x2)+(y-y1)(y-y2)=0。
第六部分 圆锥曲线
1.定义:⑴椭圆: ;
⑵双曲线: ;⑶抛物线:略
2.结论
⑴焦半径:①椭圆: (e为离心率); (左“+”右“-”);
②抛物线:
⑵弦长公式:

注:(Ⅰ)焦点弦长:①椭圆: ;②抛物线: =x1+x2+p= ;(Ⅱ)通径(最短弦):①椭圆、双曲线: ;②抛物线:2p。
⑶过两点的椭圆、双曲线标准方程可设为: ( 同时大于0时表示椭圆, 时表示双曲线);
⑷椭圆中的结论:
①内接矩形最大面积 :2ab;
②P,Q为椭圆上任意两点,且OP 0Q,则 ;
③椭圆焦点三角形:<Ⅰ>. ,( );<Ⅱ>.点 是 内心, 交 于点 ,则 ;
④当点 与椭圆短轴顶点重合时 最大;
⑸双曲线中的结论:
①双曲线 (a>0,b>0)的渐近线: ;
②共渐进线 的双曲线标准方程为 为参数, ≠0);
③双曲线焦点三角形:<Ⅰ>. ,( );<Ⅱ>.P是双曲线 - =1(a>0,b>0)的左(右)支上一点,F1、F2分别为左、右焦点,则△PF1F2的内切圆的圆心横坐标为 ;
④双曲线为等轴双曲线 渐近线为 渐近线互相垂直;
(6)抛物线中的结论:
①抛物线y2=2px(p>0)的焦点弦AB性质:<Ⅰ>. x1x2= ;y1y2=-p2;
<Ⅱ>. ;<Ⅲ>.以AB为直径的圆与准线相切;<Ⅳ>.以AF(或BF)为直径的圆与 轴相切;<Ⅴ>. 。
②抛物线y2=2px(p>0)内结直角三角形OAB的性质:
<Ⅰ>. ; <Ⅱ>. 恒过定点 ;
<Ⅲ>. 中点轨迹方程: ;<Ⅳ>. ,则 轨迹方程为: ;<Ⅴ>. 。
③抛物线y2=2px(p>0),对称轴上一定点 ,则:
<Ⅰ>.当 时,顶点到点A距离最小,最小值为 ;<Ⅱ>.当 时,抛物线上有关于 轴对称的两点到点A距离最小,最小值为 。
3.直线与圆锥曲线问题解法:
⑴直接法(通法):联立直线与圆锥曲线方程,构造一元二次方程求解。
注意以下问题:
①联立的关于“ ”还是关于“ ”的一元二次方程?
②直线斜率不存在时考虑了吗?
③判别式验证了吗?
⑵设而不求(代点相减法):--------处理弦中点问题
步骤如下:①设点A(x1,y1)、B(x2,y2);②作差得 ;③解决问题。
4.求轨迹的常用方法:(1)定义法:利用圆锥曲线的定义; (2)直接法(列等式);(3)代入法(相关点法或转移法);⑷待定系数法;(5)参数法;(6)交轨法。
第七部分 平面向量
⑴设a=(x1,y1),b=(x2,y2),则: ① a‖b(b≠0) a= b ( x1y2-x2y1=0;
② a⊥b(a、b≠0) a•b=0 x1x2+y1y2=0 .
⑵a•b=|a||b|cos<a,b>=x2+y1y2;
注:①|a|cos<a,b>叫做a在b方向上的投影;|b|cos<a,b>叫做b在a方向上的投影;
6 a•b的几何意义:a•b等于|a|与|b|在a方向上的投影|b|cos<a,b>的乘积。
⑶cos<a,b>= ;
⑷三点共线的充要条件:P,A,B三点共线 ;
附:(理科)P,A,B,C四点共面 。
第八部分 数列
1.定义:
⑴等差数列 ;
⑵等比数列

2.等差、等比数列性质
等差数列 等比数列
通项公式
前n项和
性质 ①an=am+ (n-m)d, ①an=amqn-m;
②m+n=p+q时am+an=ap+aq ②m+n=p+q时aman=apaq
③ 成AP ③ 成GP
④ 成AP, ④ 成GP,
等差数列特有性质:
1 项数为2n时:S2n=n(an+an+1)=n(a1+a2n); ; ;
2 项数为2n-1时:S2n-1=(2n-1) ; ; ;
3 若 ;若 ;
若 。
3.数列通项的求法:
⑴分析法;⑵定义法(利用AP,GP的定义);⑶公式法:累加法( ;
⑷叠乘法( 型);⑸构造法( 型);(6)迭代法;
⑺间接法(例如: );⑻作商法( 型);⑼待定系数法;⑽(理科)数学归纳法。
注:当遇到 时,要分奇数项偶数项讨论,结果是分段形式。
4.前 项和的求法:
⑴拆、并、裂项法;⑵倒序相加法;⑶错位相减法。
5.等差数列前n项和最值的求法:
⑴ ;⑵利用二次函数的图象与性质。
第九部分 不等式
1.均值不等式:
注意:①一正二定三相等;②变形, 。
2.绝对值不等式:
3.不等式的性质:
⑴ ;⑵ ;⑶ ;
;⑷ ; ;
;⑸ ;(6)

4.不等式等证明(主要)方法:
⑴比较法:作差或作比;⑵综合法;⑶分析法。
第十部分 复数
1.概念:
⑴z=a+bi∈R b=0 (a,b∈R) z= z2≥0;
⑵z=a+bi是虚数 b≠0(a,b∈R);
⑶z=a+bi是纯虚数 a=0且b≠0(a,b∈R) z+ =0(z≠0) z2<0;
⑷a+bi=c+di a=c且c=d(a,b,c,d∈R);
2.复数的代数形式及其运算:设z1= a + bi , z2 = c + di (a,b,c,d∈R),则:
(1) z 1± z2 = (a + b) ± (c + d)i;⑵ z1.z2 = (a+bi)•(c+di)=(ac-bd)+ (ad+bc)i;⑶z1÷z2 = (z2≠0) ;
3.几个重要的结论:
;⑶ ;⑷
⑸ 性质:T=4; ;
(6) 以3为周期,且 ; =0;
(7) 。
4.运算律:(1)
5.共轭的性质:⑴ ;⑵ ;⑶ ;⑷ 。
6.模的性质:⑴ ;⑵ ;⑶ ;⑷ ;
第十一部分 概率
1.事件的关系:
⑴事件B包含事件A:事件A发生,事件B一定发生,记作 ;
⑵事件A与事件B相等:若 ,则事件A与B相等,记作A=B;
⑶并(和)事件:某事件发生,当且仅当事件A发生或B发生,记作 (或 );
⑷并(积)事件:某事件发生,当且仅当事件A发生且B发生,记作 (或 ) ;
⑸事件A与事件B互斥:若 为不可能事件( ),则事件A与互斥;
(6)对立事件: 为不可能事件, 为必然事件,则A与B互为对立事件。
2.概率公式:
⑴互斥事件(有一个发生)概率公式:P(A+B)=P(A)+P(B);
⑵古典概型: ;
⑶几何概型: ;

第十二部分 统计与统计案例
1.抽样方法
⑴简单随机抽样:一般地,设一个总体的个数为N,通过逐个不放回的方法从中抽取一个容量为n的样本,且每个个体被抽到的机会相等,就称这种抽样为简单随机抽样。
注:①每个个体被抽到的概率为 ;
②常用的简单随机抽样方法有:抽签法;随机数法。
⑵系统抽样:当总体个数较多时,可将总体均衡的分成几个部分,然后按照预先制定的
规则,从每一个部分抽取一个个体,得到所需样本,这种抽样方法叫系统抽样。
注:步骤:①编号;②分段;③在第一段采用简单随机抽样方法确定其时个体编号 ;
④按预先制定的规则抽取样本。
⑶分层抽样:当已知总体有差异比较明显的几部分组成时,为使样本更充分的反映总体的情况,将总体分成几部分,然后按照各部分占总体的比例进行抽样,这种抽样叫分层抽样。
注:每个部分所抽取的样本个体数=该部分个体数
2.总体特征数的估计:
⑴样本平均数 ;
⑵样本方差 ;
⑶样本标准差 = ;
3.相关系数(判定两个变量线性相关性):
注:⑴ >0时,变量 正相关; <0时,变量 负相关;
⑵① 越接近于1,两个变量的线性相关性越强;② 接近于0时,两个变量之间几乎不存在线性相关关系。
4.回归分析中回归效果的判定:
⑴总偏差平方和: ⑵残差: ;⑶残差平方和: ;⑷回归平方和: - ;⑸相关指数 。
注:① 得知越大,说明残差平方和越小,则模型拟合效果越好;
② 越接近于1,,则回归效果越好。
5.独立性检验(分类变量关系):
随机变量 越大,说明两个分类变量,关系越强,反之,越弱。
第十四部分 常用逻辑用语与推理证明
1. 四种命题:
⑴原命题:若p则q; ⑵逆命题:若q则p;
⑶否命题:若 p则 q;⑷逆否命题:若 q则 p
注:原命题与逆否命题等价;逆命题与否命题等价。
2.充要条件的判断:
(1)定义法----正、反方向推理;
(2)利用集合间的包含关系:例如:若 ,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;
3.逻辑连接词:
⑴且(and) :命题形式 p q; p q p q p q p
⑵或(or):命题形式 p q; 真 真 真 真 假
⑶非(not):命题形式 p . 真 假 假 真 假
假 真 假 真 真
假 假 假 假 真
4.全称量词与存在量词
⑴全称量词-------“所有的”、“任意一个”等,用 表示;
全称命题p: ;
全称命题p的否定 p: 。
⑵存在量词--------“存在一个”、“至少有一个”等,用 表示;
特称命题p: ;
特称命题p的否定 p: ;
第十五部分 推理与证明
1.推理:
⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。
①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。
注:归纳推理是由部分到整体,由个别到一般的推理。
②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。
注:类比推理是特殊到特殊的推理。
⑵演绎推理:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。
注:演绎推理是由一般到特殊的推理。
“三段论”是演绎推理的一般模式,包括:
⑴大前提---------已知的一般结论;
⑵小前提---------所研究的特殊情况;
⑶结 论---------根据一般原理,对特殊情况得出的判断。
二.证明
⒈直接证明
⑴综合法
一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。综合法又叫顺推法或由因导果法。
⑵分析法
一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。分析法又叫逆推证法或执果索因法。
2.间接证明------反证法
一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。
附:数学归纳法(仅限理科)
一般的证明一个与正整数 有关的一个命题,可按以下步骤进行:
⑴证明当 取第一个值 是命题成立;
⑵假设当 命题成立,证明当 时命题也成立。
那么由⑴⑵就可以判定命题对从 开始所有的正整数都成立。
这种证明方法叫数学归纳法。
注:①数学归纳法的两个步骤缺一不可,用数学归纳法证明问题时必须严格按步骤进行;
3 的取值视题目而4 定,5 可能是1,6 也可能是2等。
第十六部分 理科选修部分
1. 排列、组合和二项式定理
⑴排列数公式: =n(n-1)(n-2)…(n-m+1)= (m≤n,m、n∈N*),当m=n时为全排列 =n(n-1)(n-2)…3.2.1=n!;
⑵组合数公式: (m≤n), ;
⑶组合数性质: ;
⑷二项式定理:
①通项: ②注意二项式系数与系数的区别;
⑸二项式系数的性质:
①与首末两端等距离的二项式系数相等;②若n为偶数,中间一项(第 +1项)二项式系数最大;若n为奇数,中间两项(第 和 +1项)二项式系数最大;

(6)求二项展开式各项系数和或奇(偶)数项系数和时,注意运用赋值法。
2. 概率与统计
⑴随机变量的分布列:
①随机变量分布列的性质:pi≥0,i=1,2,…; p1+p2+…=1;
②离散型随机变量:
X x1 X2 … xn …
P P1 P2 … Pn …
期望:EX= x1p1 + x2p2 + … + xnpn + … ;
方差:DX= ;
注: ;
③两点分布:
X 0 1 期望:EX=p;方差:DX=p(1-p).
P 1-p p

4 超几何分布:
一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则 其中, 。
称分布列

X 0 1 … m
P …
为超几何分布列, 称X服从超几何分布。
⑤二项分布(独立重复试验):
若X~B(n,p),则EX=np, DX=np(1- p);注: 。
⑵条件概率:称 为在事件A发生的条件下,事件B发生的概率。
注:①0 P(B|A) 1;②P(B∪C|A)=P(B|A)+P(C|A)。
⑶独立事件同时发生的概率:P(AB)=P(A)P(B)。
⑷正态总体的概率密度函数: 式中 是参数,分别表示总体的平均数(期望值)与标准差;
(6)正态曲线的性质:
①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,关于直线x= 对称;
③曲线在x= 处达到峰值 ;④曲线与x轴之间的面积为1;
5 当 一定时,6 曲线随 质的变化沿x轴平移;
7 当 一定时,8 曲线形状由 确定: 越大,9 曲线越“矮胖”,10 表示总体分布越集中;
越小,曲线越“高瘦”,表示总体分布越分散。
注:P =0.6826;P =0.9544
P =0.9974

❾ 高中数学函数知识点归纳有哪些

高中数学函数知识点如下:

1、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

2、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数。

3、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],该式的特点是:右端为一个奇函数和一个偶函数的和。

4、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)。

5、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。