当前位置:首页 » 基础知识 » 数学知识盘点五年级
扩展阅读
中国动漫节多少人 2025-01-20 17:07:50
商品基础分如何优化 2025-01-20 16:38:30

数学知识盘点五年级

发布时间: 2022-07-12 00:39:30

Ⅰ 五年级上册数学第一单元知识

人教版五年级数学上册第一单元知识点+图文讲解




Ⅱ 小学数学五年级位置知识点总结

1,横排叫做行,竖排叫做列。确定第几列一般是从左往右数,确定第几行一般是从前往后数。

2,用有顺序的两个数表示出一个确定的位置就是数对,确定一个物体的位置需要两个数据。

3,用数对表示位置时,先表示第几列,再表示第几行,不要把列和行弄颠倒。

4,写数对时,用括号把列数和行数括起来,并在列数和行数之间写个逗号把它们隔开,写作:(列,行)。

5,数对的读法:(2,3)可以直接读(2,3),也可以读作数对(2,3)。

6,一组数对只能表示一个位置。

7,表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。

延伸简介:

1,数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。

2,作用:一组数对确定唯一一个点的位置,经度和纬度就是这个原理。 例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

3,在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

4,数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线,(有一个数不确定,不能确定一个点)。

Ⅲ 五年级下册数学必背知识点有哪些

五年级下册数学必背知识点有如下:

一、长方形的周长=(长+宽)×2 ,C=(a+b)×2。

二、正方形的周长=边长×4, C=4a。

三、长方形的面积=长×宽 ,S=ab。

四、正方形的面积=边长×边长 ,S=a.a=a^2。

五、三角形的面积=底×高÷2 ,S=ah÷2。

六、平行四边形的面积=底×高, S=ah。

七、梯形的面积=(上底+下底)×高÷2, S=(a+b)h÷2。

八、圆的周长=圆周率×直径=圆周率×半径×2, c=πd=2πr。

九、圆的面积=圆周率×半径×半径πr ^2。

Ⅳ 人教版小学数学五年级上册知识点有哪些

小学五年级数学上册复习教学知识点归纳总结
第一单元小数乘法
1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算.
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算.
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.
2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少.
如:1.5×0.8就是求1.5的十分之八是多少.
1.5×1.8就是求1.5的1.8倍是多少.
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位.
3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小.
4、求近似数的方法一般有三种:(P10)
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分.保留一位小数,表示计算到角.
6、(P11)小数四则运算顺序跟整数是一样的.
7、运算定律和性质:
加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
除法:除法性质:a÷b÷c=a÷(b×c)
第二单元小数除法
8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算.
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算.
9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除.,商的小数点要和被除数的小数点对齐.整数部分不够除,商0,点上小数点.如果有余数,要添0再除.
10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算.
注意:如果被除数的位数不够,在被除数的末尾用0补足.
11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数.
12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变.②除数不变,被除数扩大,商随着扩大.③被除数不变,除数缩小,商扩大.
13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数.
循环节:一个循环小数的小数部分,依次不断重复出现的数字.如6.3232……的循环节是32.
14、小数部分的位数是有限的小数,叫做有限小数.小数部分的位数是无限的小数,叫做无限小数.
第三单元观察物体
15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面.
第四单元简易方程
16、(P45)在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写.
加号、减号除号以及数与数之间的乘号不能省略.
17、a×a可以写作a•a或a ,a 读作a的平方. 2a表示a+a
18、方程:含有未知数的等式称为方程.
使方程左右两边相等的未知数的值,叫做方程的解.
求方程的解的过程叫做解方程.
19、解方程原理:天平平衡.
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立.
20、10个数量关系式:加法:和=加数+加数 一个加数=和-两一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数×因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
21、所有的方程都是等式,但等式不一定都是等式.
22、方程的检验过程:方程左边=……
23、方程的解是一个数;
解方程式一个计算过程.=方程右边
所以,X=…是方程的解.
第五单元多边形的面积
23、公式:长方形:周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】 字母公式:C=(a+b)×2
面积=长×宽 字母公式:S=ab
正方形:周长=边长×4 字母公式:C=4a
面积=边长×边长 字母公式:S=a
平行四边形的面积=底×高 字母公式: S=ah
三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】
字母公式: S=ah÷2
梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2
【上底=面积×2÷高-下底,下底=面积×2÷高-上底;
高=面积×2÷(上底+下底)】
24、平行四边形面积公式推导:剪拼、平移
25、三角形面积公式推导:旋转
平行四边形可以转化成一个长方形;
两个完全一样的三角形可以拼成一个平行四边形,
长方形的长相当于平行四边形的底;
平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高;
平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积,
平行四边形的面积等于三角形面积的2倍,
因为长方形面积=长×宽,所以平行四边形面积=底×高.
因为平行四边形面积=底×高,所以三角形面积=底×高÷2
26、梯形面积公式推导:旋转
27、三角形、梯形的第二种推导方法老师已讲,自己看书
两个完全一样的梯形可以拼成一个平行四边形, 知道就行.
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的2倍,
因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍.
29、长方形框架拉成平行四边形,周长不变,面积变小.
30、组合图形:转化成已学的简单图形,通过加、减进行计算.
第六单元统计与可能性
31、平均数=总数量÷总份数
32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适.
第七单元数学广角
33、数不仅可以用来表示数量和顺序,还可以用来编码.
34、邮政编码:由6位组成,前2位表示省(直辖市、自治区)
0 5 4 0 0 1
前3位表示邮区
前4位表示县(市)
最后2位表示投递局

35、身份证码: 18位
1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
河北省 邢台市 邢台县 出生日期 顺序码 校验码
倒数第二位的数字用来表示性别,单数表示男,双数表示女.

Ⅳ 五年级数学位置知识点总结是什么

如下:

1,横排叫做行,竖排叫做列。确定第几列一般是从左往右数,确定第几行一般是从前往后数。

2,用有顺序的两个数表示出一个确定的位置就是数对,确定一个物体的位置需要两个数据。

3,用数对表示位置时,先表示第几列,再表示第几行,不要把列和行弄颠倒。

4,写数对时,用括号把列数和行数括起来,并在列数和行数之间写个逗号把它们隔开,写作:(列,行)。

5,数对的读法:(2,3)可以直接读(2,3),也可以读作数对(2,3)。

6,一组数对只能表示一个位置。

7,表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。

Ⅵ 小学数学五年级的知识点有哪些

五年级第一学期数学概念综合

1、0既不是正数,也不是负数。正数都大于0,负数都小于0。通常情况下正、负数表示两种相反关系的量,如果盈利用正数表示,那么亏损就用负数,如果高于海平面用正数表示,那么低于海平面用负数表示。水沸腾的温度是100℃,水结冰的温度是0℃。
2、在数不规则图形的面积时不满一格的看作半格。先数满格,再数半格。
3、长方形的周长=(长+宽)×2 长方形的面积=长×宽
正方形的周长=边长×4 正方形的面积=边长×边长
4、沿着平行四边形的任意一条高剪开,然后通过移动拼成一个长方形。长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高。因为长方形的面积=长×宽,所以平行四边形的面积=底×高,用字母表示S=a×h。
5、将两个完全一样的三角形拼成一个平行四边形,这个平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,拼成的平行四边形的面积是每个三角形面积的2倍,每个三角形的面积是拼成的平行四边形面积的一半。因为平行四边形的面积等于底×高,所以三角形的面积等于底×高÷2。用字母表示S=a×h÷2。 等底等高的两个三角形的面积相等。
6、在平行四边形里画一个最大的三角形,这个三角形的面积等于这个平行四边形面积的一半。
用细木条钉成一个长方形框架,如果把他拉成一个平行四边形,则它的周长不变,面积变小了,因为底不变,高变小了;
如果将平行四边形框架拉成一个长方形,则他们的周长不变,面积变大了。
7、将两个完全一样的梯形拼成一个平行四边形,这个平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形的高,拼成的平行四边形的面积是每个梯形面积的2倍,每个梯形的面积是拼成的平行四边形面积的一半。因为平行四边形的面积=底×高,所以梯形的面积=(上底+下底)×高÷2字母表示S=(a+b)×h÷2.
8、分母是10、100、1000……的分数都可以用小数表示。
分母是10的分数写成一位小数,表示十分之几。
分母是100的分数写成两位小数,表示百分之几。
分母是1000的分数写成三位小数,表示千分之几。
小数点左边第一位是个位,计数单位个(1)
小数点左边第二位是十位,计数单位十(10)
小数点右边第一位是十分位,计数单位十分之一(0.1)
小数点右边第二位是百分位,计数单位百分之一(0.01)
小数点右边第三位是千分位,计数单位千分之一(0.001)
小数部分最高位是十分位,最大的计数单位是十分之一。相邻两个计数单位之间的进率是10。
9、1里面有(10)个0.1(十分之一) ,0.1(十分之一)里面有10个0.01(百分之一)0.01(百分之一)里面有10个0.001(千分之一),1里面有100个0.01。
10、小数的性质:在小数的末尾添上“0”或去掉“0”,小数的大小不变。
11、用“万”作单位:1、在万位后面点上小数点;2、添个“万”字。用“=”号。用“亿”作单位:1、在亿位后面点上小数点;2、添个“亿”字。用“=”号。注意:改写不能改变原数的大小。
省略万后面的尾数:要看“千”位,用四舍五入法取近似值。用“≈”号。省略亿后面的尾数:要看“千万”位,用四舍五入法取近似值。用“≈”号。
保留整数,就是精确到个位,要看小数部分第一位(十分位)。
保留一位小数,就是精确到十分位,要看小数部分第二位(百分位)。
保留两位小数,就是精确到百分位,要看小数部分第三位(千分位)。
注意:在表示近似值时末尾的“0”一定不能去掉。
例如,一个小数保留两位小数是1、50,末尾的“0”不能去掉。虽然1、50与1.5大小相等,但表示的精确程度不一样,1.50表示精确到百分位,而1.5表示精确到十分位,所以1.50在表示近似数时末尾的“0”一定不能去掉。
12、计算小数加减法时,要把小数点对齐,也就是相同数位对齐。
13、找规律:1、找到周期;2、将个数÷周期;3、余数是几就是第几个。4、要算每个项目一共有几个,可以分三步去做:(1)每几个为一组;(2)每组中有几个;再乘一共有组数(3)最后加上余数中的个数就等于一共有多少个。
14、解决问题中的策略:用一一列举法将可能的情况用列表法全部列举出来,列举时的技巧是先考虑数字较大的(放在第一行)。
15、在计算小数乘法时(1)算:按照整数乘法的法则进行计算;(2)看:两个因数中一共有几位小数(3)数:就从积的末尾起数出几位;(4)点:点上小数点;(5)去:去掉小数末尾的0。
16、一个小数乘10、100、1000……只要把小数点向右移动一位、两位、三位……
一个小数除以10、100、1000……只要把小数点向左移动一位、两位、三位……
17、1平方千米就是边长1000米的正方形的面积,等于1000000平方米。1公顷就是边长100米的正方形的面积,等于10000平方米。 1平方千米=100公顷。1公顷=100公亩=10000平方米
18、整数加、减、乘、除法的运算定律对于小数也同样适用。
加法交换律:a+b=b+a 加法结合律:(a+b)+c= a +(b+c)
乘法交换律:a×b=b×a 加法结合律:(a×b)×c= a ×(b×c)
减法的性质:a―b―c = a―(b+c)
除法的性质:a÷b÷c = a÷(b×c)
19、除数是小数的除法,首先看除数一共有几位小数,然后就根据商不变的规律,将被除数和除数同时扩大,使之变为除数是整数的除法,重点是将商的小数点和现在被除数的小数点对齐,除不尽的添“0”继续除(一下子只能添一个0),哪一位不够商1就在那一位上商0。
20、当一个因数不为0时,另一个因数大于(小于)1,积就大于(小于)第一个因数。(一个因数乘一个大于1的数,积会越乘越大;乘一个小于1的数,积会越乘越小。)
A×(>1)(>)A A×(<1)(<)A
当被除数不为0时,除数大于(小于)1,商反而小于(大于)被除数。(除以一个大于1的数,商反而越除越小;除以一个小于1的数,商反而越除越大。)
21、质量单位:
1吨=1000千克, 1千克=1000克,
长度单位:
1千米=1000米 1米=10分米=100厘米=1000毫米
容积单位:
1升=1000毫升
面积单位:
1平方千米=100公顷 1公顷=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米

Ⅶ 小学五年级数学学习重点有哪些

数学作为一门具有很强逻辑性和连续性的学科,是每个小学生都应该掌握的基础知识.小学数学重点是基础知识的掌握基和学习,学习数学的标准就是能够对该学籍范围内的题目进行正确的解答.考察公式概念是小学数学重点要掌握的知识,下面这几个学习方法带你学好数学.

(同学们开讲)

学习小学数学重点就是注重学习的方法,但是也需要学生有坚持不懈的精神.勤学多问不耻下问是学习的良好态度,他们会把你带到一个更高的层次,掌握好学习方法,你会对每一天的新知识充满兴趣.

Ⅷ 五年级上册数学重要知识点有哪些

五年级上册数学重要知识点有:

1、小数乘整数与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

2、一个因数不变,另一个因数扩大(缩小)n倍,积也跟着扩大(缩小)n倍;一个因数扩大n倍,另一个因数缩小n倍,积不变。

3、一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

5、在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数求出商的近似数。

Ⅸ 五年级数学的重要点

五年级上册知识点概念总结:

1.小数乘整数的意义:求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。

2.小数乘法法则

先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。

3.小数除法

小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

4.除数是整数的小数除法计算法则

先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。

5.除数是小数的除法计算法则

先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。

6.积的近似数:

四舍五入是一种精确度的计数保留法,与其他方法本质相同。但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。

7.数的互化

(1)小数化成分数

原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

(2)分数化成小数

用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

(3)化有限小数

一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。

(4)小数化成百分数

只要把小数点向右移动两位,同时在后面添上百分号。

(5)百分数化成小数

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

(6)分数化成百分数

通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

(7)百分数化成小数

先把百分数改写成分数,能约分的要约成最简分数。

8.小数的分类

(1)有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23都是有限小数。

(2)无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33……3.1415926……

(3)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。

(4)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.555……0.0333……12.109109……;一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99……的循环节是“9”,0.5454……的循环节是“54”。

9.循环节:如果无限小数的小数点后,从某一位起向右进行到某一位止的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节。把循环小数写成个别项与一个无穷等比数列的和的形式后可以化成一个分数。

10.简易方程:方程ax±b=c(a,b,c是常数)叫做简易方程。

11.方程:含有未知数的等式叫做方程。(注意方程是等式,又含有未知数,两者缺一不可)

方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。

12.方程的解

使方程左右两边相等的未知数的值,叫做方程的解。

如果两个方程的解相同,那么这两个方程叫做同解方程。

13.方程的同解原理:

(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

14.解方程:解方程,求方程的解的过程叫做解方程。

15.列方程解应用题的意义:

用方程式去解答应用题求得应用题的未知量的方法。

16.列方程解答应用题的步骤

(1)弄清题意,确定未知数并用x表示;

(2)找出题中的数量之间的相等关系;

(3)列方程,解方程;

(4)检查或验算,写出答案。

17.列方程解应用题的方法

(1)综合法

先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

(2)分析法

先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

18.列方程解应用题的范围:小学范围内常用方程解的应用题:

(1)一般应用题;

(2)和倍、差倍问题;

(3)几何形体的周长、面积、体积计算;

(4)分数、百分数应用题;

(5)比和比例应用题。

19.平行四边形的面积公式:

底×高(推导方法如图);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边=ah

20.三角形面积公式:

S△=1/2*ah(a是三角形的底,h是底所对应的高)

21.梯形面积公式

(1)梯形的面积公式:(上底+下底)×高÷2。

用字母表示:(a+b)×h÷2

(2)另一计算公式:中位线×高

用字母表示:l·h

(3)对角线互相垂直的梯形:对角线×对角线÷2