当前位置:首页 » 基础知识 » 概率论是数学中的重要知识吗
扩展阅读
红楼梦为什么被封为经典 2025-01-21 08:44:40
状态栏歌词在哪里下 2025-01-21 08:37:47
为什么遇见你歌词 2025-01-21 08:23:52

概率论是数学中的重要知识吗

发布时间: 2022-07-09 12:38:58

⑴ 高等数学、线性代数、概率与数理统计、几何学这些知识有什么作用主要应用有哪些

高等数学、线性代数、概率与数理统计、几何学这些知识作用和主要应用:

高等数学,可以计算建筑结构受力,计算河坝,计算流体力学,计算电路等。

线性代数可以求解方程组,也可以做最优化设计等。

几何学可以用来搞建筑设计,齿轮设计,隐形战机设计,飞船设计等。

概率与数量统计可以用来协助买股票或彩票,当然也可以用来预测社会发展趋势或其他事物出现的概率等。

线性代数的知识较为独立,虽有几何意义,但是脱离了几何也可以学习,几何只是为了帮助理解,只要题目考的简单,完全可以直接学习线性代数。概率论牵扯到的知识较多,高中的排列组合公式需要掌握,还建议简单学习一元微积分和二重积分,做到简单的函数可以求导或积分即可。

线性代数

是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。

线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。

⑵ 其实学概率论有什么用

概率论渗透到现代生活的方方面面。正如19世纪法国着名数学家拉普拉斯所说:“对于生活中的大部分,最重要的问题实际上只是概率问题。你可以说几乎我们所掌握的所有知识都是不确定的,只有一小部分我们能确定地了解。甚至数学科学本身,归纳法、类推法和发现真理的首要手段都是建立在概率论的基础之上。因此,整个人类知识系统是与这一理论相联系的……”
下面是历史上的一些案例。

婴儿出生时的男女比例
一般人或许认为:生男生女的可能性是相等的,因而推测出男婴和女婴的出生数的比应当是1:1,可事实并非如此.
公元1814年,法国数学家拉普拉斯(Laplace 1794-1827)在他的新作《概率的哲学探讨》一书中,记载了一下有趣的统计.他根据伦敦,彼得堡,柏林和全法国的统计资料,得出了几乎完全一致的男婴和女婴出生数的比值是22:21,即在全体出生婴儿中,男婴占51.2%,女婴占48.8%.可奇怪的是,当他统计1745-1784整整四十年间巴黎男婴出生率时,却得到了另一个比是25:24,男婴占51.02%,与前者相差0.14%.对于这千分之一点四的微小差异,拉普拉斯感到困惑不解,他深信自然规律,他觉得这千分之一点四的后面,一定有深刻的因素.于是,他深入进行调查研究,终于发现:当时巴黎人“重女轻男”,有抛弃男婴的陋俗,以至于歪曲了出生率的真相,经过修正,巴黎的男女婴的出生比率依然是22:21.
一名优秀数学家=10个师
在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.
1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,
英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战”搞得盟军焦头烂额.
为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后分析,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船(为100艘)编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌人相遇的概率就越大. 美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.
什么是概率天气预报
概率天气预报是用概率值表示预报量出现可能性的大小,它所提供的不是某种天气现象的\"有\"或\"无\",某种气象要素值的\"大\"或\"小\",而是天气现象出现的可能性有多大。如对降水的预报,传统的天气预报一般预报有雨或无雨,而概率预报则给出可能出现降水的百分数,百分数越大,出现降水的可能性越大。一般来讲,概率值小于或等于30%,可认为基本不会降水;概率值在30%-60%,降水可能发生,但可能性较小;概率在60%-70%,降水可能性很大;概率值大于70%,有降水发生。概率天气预报既反映了天气变化确定性的一面,又反映了天气变化的不确定性和不确定程度。在许多情况下,这种预报形式更能适应经济活动和军事活动中决策的需要。
艾滋病的传染概率有多大
艾滋病传染概率有多大?据地坛医院性传播疾病防治中心徐克沂主任介绍,艾滋病是通过3种传播途径传染给他人的,即:血液传播、性传播、母婴传播。如果一个正常人输进了HIV(艾滋病病毒)阳性感染者或艾滋病病人的血液其感染的概率是95%,而一个HIV阳性感染者或已经发病的病人与一个正常人发生性关系的感染概率和性别有一定关系,男传给女的概率是0.2%,女传给男的概率是0.l%,男传男的概率要比以上两种方式大得多。如果母亲是一个HIV阳性或艾滋病的病人,其感染给胎儿的概率是25%,但是如果母亲经过AZT的抗病毒治疗,其胎儿的感染概率下降到8%;经过联合疗法(鸡尾酒疗法)治疗胎儿的感染概率可能下降为2%。
艾滋病病毒是一种十分脆弱的病毒,它对热和干燥十分敏感。在干燥的环境中,艾滋病毒10分钟死亡,在60摄氏度的环境中30分钟灭活。如果一支刚接触病人身体带有血液的注射器,马上刺入正常人体内,其感染的概率小于0.3%。蚊虫叮咬不会传染艾滋病就是因为这个原因。
锣密鼓开展,例如用传统医学方法研制的艾滋疫苗;用中医药技术研发的艾滋抗体及从计划生育角度转而提倡运用的“避孕套”,这些都让我们看到人类克服艾滋病的曙光。
彩票中奖概率话你知
“36选7”“26选5”概率
据有关专家介绍,广东省目前发行的体彩“36选7”、南粤风采“36选7”、南粤风采“26选5”均属于数字组合型玩法,其中奖概率的计算方式也是相同的,其中“36选7”玩法的头奖命中概率为1/8347680,“26选5”玩法的头奖命中概率为1/65780;目前体彩“36选7”二次开奖的中奖概率仍为1/8347680,南粤风采“36选7”全省特别奖(中8个号码)的中奖概率为1/32060340,南粤风采“36选7”南粤福星奖(中9个号码)的中奖概率为1/94143280,南粤风采“26选5”幸运奖(中7个号码)的中奖概率为1/657800。
吸烟危及生命概率:50%戒烟等于自救
1987年11月,世界卫生组织(WHO)在日本东京举行的第6届吸烟与健康国际会议上,建议把1988年4月7日,也就是世界卫生组织成立40周年纪念日,作为“世界无烟日”,提出“要吸烟还是要健康”的口号。1989年,世界卫生组织又把这一天改定在每年的5月31日。
今年5月31日,我们将迎来第17个世界无烟日,但目前我国吸烟现状却不容乐观:烟民人数不断增加,达3.2亿人,烟民平均年龄在降低,女烟民及青少年吸烟的数量在不断增加。
大家都玩过抓阄,这种游戏很有意思,而且也是大家认为最公平的一种选择方式,这里面用的不也是概率么?仍硬币也是抓阄的一种形式,只不过是两者选择其中的一个,不同的概率而已。许多游戏的设计,要么纯粹就是概率,要么是利用概率骗人。真要去玩的话,当然得看到事物的本质了,否则岂不是很傻啊。
上面说的东西或许大家都比较容易理解,但是有些概率估计大家就无法去得出一个比较确切的结论,而且因此n多的人为此迷茫。譬如,对于一个憧憬爱情的人来说,如果被问到:你觉得你碰到你的理想另一半的概率是多少?有多少人能够回答。当然,我们可以说上天为每个人都安排了另一个,但是这是一个概率问题,而不是100%的问题。还有,每个人认为自己将来变成富豪的可能性有多大?这个问题,估计也是千奇百怪的回答。有的人说可能性没有,真的吗?理性的说,任何人都有发达的可能性,除了他是死人。在我前面的博客里面提到了关于相亲问题,这里我们也来看看它的概率问题。

⑶ 什么是概率论概率论和数学有关系么

课本有:现代(人教版)、概率论(浙大版),这个是考生课本中最常用的版本,编写的不错,和考试内容十分的吻合;
复习资料:2李的复习全书,这个上面包含了考研数学所有的内容,故使用者一本就好了;
真题:2李的真题,编写的不错,可以和复习全书一起买了,还能便宜些;

⑷ 概率论用高数的地方多么

摘要 高等数学是数学的基础,而概率论是数学中很重要的一部分,往往使用高等数学中的微积分的基本方法去解决一些概率问题,甚至可以说这种方法基本上是贯穿始终的。高等数学在概率论发展过程中对概率论的渗透与推动,反映了概率论与高等数学的关系。高等数学和概率论这两门课是理科专业的两门非常重要的基础课,同时也是本科生考研的两门常备课,特别是概率统计,它具有实践性强、设计内容广、学习难度大等特点,如何教好、学好的一个重要途径就是发挥好高等数学在概率论中的理论和工具作用。高等数学中的极限、导数、积分和级数在概率论中均有应用。高等数学在概率论中具有很重要的理论应用:1.随机事件的研究方法是将集合赋予了概率论的含义,事件之间的运算其实是集合之间的运算,运用最广泛也是重要的一种运算律––德摩根公式2.连续型随机变量的概率密度与分布函数间的关系以及部分相关性质将变上限积分的求导问题、偏导数的概念、极限等知识发挥的特别充分

⑸ 概率论是高等数学的一部分吗

不是,直接就是两本书,高等数学,概率论,线性代数,三本数学为考研数学内容

⑹ 考研数学三,哪一块比较重要,概率论和线代难不难

高数、概率论和线代都是数三的重要组成部分,也就是拿分点,总体看,数三的高数最难,概率论和线代其次。

1、首先考数学不要忽略了课本,同济的高数(第六版)、线代(第五版),浙大的概率(第四版)这几本书先要准备好(不要比大纲规定的版本旧就好了),然后是配套版本的课后习题解,这个在当当或者某宝都能买到,认认真真把教材过一到两遍,课后习题配合习题解一定要弄透彻。之后才能做其他的教辅资料,不要直接做教辅资料忽视课本。

2、高数部分。

可选择李永乐复习全书 ,这本书可只做高数部分。
高数部分我觉得是比较难的,思路有时候需要变化,总之高数一定要多做题、多思考、多总结。

2、线代部分

推荐李永乐的现代讲义和李永乐的基础强化课程
。线代题型基本上是中规中矩的,变化不多。

3、概率部分。

曹显宾的概率讲义、余炳森的概率视频课可以考虑。

4、真题。

推荐张宇的真题大全解,有三十一年的真题比较全,真题很重要,一定要保证每题都会做。

⑺ 概率论与数理统计是研究和揭示随机现象统计规律性的一门重要的公共基础必修课。概 率论与数理统计知识已广

概率统计是应用非常广泛的数学学科,其理论和方法的应用遍及所有科学技术领域、工农业生产、医药卫生以及国民经济的各个部门。
概率统计是概率论与数理统计的简称。概率论研究随机现象的统计规律性;数理统计研究样本数据的搜集、整理、分析和推断的各种统计方法,这其中又包含两方面的内容:试验设计与统计推断。试验设计研究合理而有效地获得数据资料的方法;统计推断则是对已经获得的数据资料进行分析,从而对所关心的问题做出尽可能精确的估计与判断。
统计学是一门研究如何收集、整理、计算、分析数据,并在此基础上作出推断的科学。由于社会、生产和科技的发展,统计学获得了空前广泛的应用,渗透到整个社会生活的各个方面。这是因为对产品质量和工作质量要求的提高势必导致“用数据说话”,这样就需要用到统计工具。我们看到,现在各门科学和各个部门都建立了自己相应的统计学,如卫生统计学、农业统计学等等。正因为这样,统计知识及作为其理论基础的概率知识在义务教育学教学大纲和与之相衔接的新高中数学教学大纲里均占有一定的地位。
在中学数学里,统计及概率知识是分成三段介绍的。本章“统计初步”是首先介绍统计知识,从数据处理的角度,较为直观、具体地介绍一些统计的最基本的知识,为以后继续学习概率统计知识打下基础。第二段是要在高中数学必修课里介绍“概论”,第三段是要在高中数学限定选修课里继续介绍统计及概率,从概率的角度来认识统计问题,把对统计的学习上升到一个新的档次。可见,在整个中学数学的统计与概率知识里,本章处于一个知识启蒙和为后续学习打好基础的地位,十分重要,那种认为本章可有可无、一旦需要再学也不迟想法,或轻率地将本章从必学内容改为选学内容的做法都是不可取的。
数理统计学的理论和方法,与人类活动的各个领域在不同程度上都有关联。因为各个领域内的活动,都得在不同的程度上与数据打交道。都有如何收集和分析数据的问题,因此也就有数理统计学用武之地。我们可以举几个例子来说明这一点,如在工业中生产一种产品,首先有设计的问题,包括配方和工艺条件的选定,这要通过从大量可能的条件组合中,通过分析试验结果来选定,可能的条件组合很多,选择哪一部分去做试验是一个很有讲究的问题,在数理统计学中有一个专门分支叫“试验设计”,就是研究怎样在尽可能少的试验次数之下,达到尽可能高效率的分析结果;其次,在生产过程中,由于原材料,设备调整及工艺参数等条件可能的变化,而造成生产条件不正常并导致出现废品,在统计学中有一门“工序控制”的学问,通过在生产过程中随时收集数据并用统计方法进行处理,可以监测出不正常情况的出现以便随时加以纠正,避免出大的问题;然后,大批量的产品生产出来后,还有一个通过抽样检验以检验其质量是否达到要求,是否可以出厂或为买方所接受的问题,处理这个问题也要使用数理统计方法,在我国现行的国家标准中有一些就与这个问题有关。

⑻ 概率论与数理统计重要吗,该用什么样的心态和方法去学呢

很重要
概率论与数理统计是数学的一个有特色且又十分活跃的分支,一方面,它有别开生面的研究课题,有自己独特的概念和方法,内容丰富,结果深刻;另一方面,它与其他学科又有紧密的联系,是近代数学的重要组成部分。由于它近年来突飞猛进的发展与应用的广泛性,目前已发展成为一门独立的一级学科。概率论与数理统计的理论与方法已广泛应用于工业、农业、军事和科学技术中,如预测和滤波应用于空间技术和自动控制,时间序列分析应用于石油勘测和经济管理,马尔科夫过程与点过程统计分析应用于地震预测等,同时他又向基础学科、工科学科渗透,与其他学科相结合发展成为边缘学科,这是概率论与数理统计发展的一个新趋势。
怎样学“概率论与数理统计”
“概率论与数理统计”是理工科大学生的一门必修课程,也是报考硕士研究生时数学试卷中重要内容之一[其中数学一占20%?,数学三占25%?,数学四占25%?(概率论)].由于该学科与生活实践和科学试验有着紧密的联系,是许多新发展的前沿学科(如控制论、信息论、可靠性理论、人工智能等)的基础,因此学好这一学科是十分重要的.?
首先我们从历届考研成绩进行分析,观察一下高等数学与概率统计之间有什么差异其一是概率统计的平均得分率往往低于高等数学平均得分率.其二高等数学的得分分布呈两头小中间大现象,即低分和高分比例小,而中间分数段比例大,而概率统计的得分率却是低分多, 中间分数少,高分较多的现象.为什么会发生上述差异?经分析发现虽然高等数学与概率统计同属数学学科,但各有自己的特点. 高等数学主要是通过学习极限、导数和积分等知识解决有关(一维或多维)函数的有关性质和图象的问题, 它与中学的数学有着密切联系而且有着相同的思想方法和解题思路.因而在概念上理解比较容易接受(当然也有比较抽象的内容如中值定理等).另一方面由于涉及许多具体初等函数,在求导数和积分时有许多计算上的技巧,需要大量练习以熟练掌握这些技巧,因而部分学生即使概念不十分清楚,但仍能正确解答相当多的试题,在考研中得到一定的成绩.?
而在“概率论与数理统计”的学习中更注重的是概念的理解,而这正是广大学生所疏忽的,在考研复习时几乎有近一半以上学生对“什么是随机变量”、“为什么要引进随机变量”仍说不清楚.对于涉及随机变量的独立,不相关等概念更是无从着手,这一方面是因为高等数学处理的是“确定”的事件.如函数y=f(x),当x确定后y有确定的值与之对应.而概率论中随机变量X在抽样前是不确定的,我们只能由随机试验确定它落在某一区域中的概率,要建立用“不确定性”的思维方法往往比较困难,如果套用确定性的思维方法就会出错.由于基本概念没有搞懂,即使是十分简单的题目也难以得分.从而造成低分多的现象.另一方面由于概率论中涉及的计算技巧不多,除了古典概型,几何概型和计算二维随机变量的函数分布时如何确定积分上、下限有一些计算的难点,其他的只是数值或者积分、导数的计算.因而如果概念清楚,那么解题往往很顺利且易得到正确答案,这正是高分较多的原因.?
根据上面分析,启示我们不能把高等数学的学习方法照搬到“概率统计”的学习上来,而应按照概率统计自身的特点提出学习方法,才能取得“事半功倍”的效果.下面我们分别对“概率论”和“数理统计”的学习方法提出一些建议.?
一、 学习“概率论”要注意以下几个要点
1. 在学习“概率论”的过程中要抓住对概念的引入和背景的理解,例如为什么要引进“随机变量”这一概念。这实际上是一个抽象过程。正如小学生最初学数学时总是一个苹果加2个苹果等于3个苹果,然后抽象为1+2=3.对于具体的随机试验中的具体随机事件,可以计算其概率,但这毕竟是局部的,孤立的,能否将不同随机试验的不同样本空间予以统一,并对整个随机试验进行刻画?随机变量X(即从样本空间到实轴的单值实函数)的引进使原先不同随机试验的随机事件的概率都可转化为随机变量落在某一实数集合B的概率,不同的随机试验可由不同的随机变量来刻画. 此外若对一切实数集合B,知道P(X∈B). 那么随机试验的任一随机事件的概率也就完全确定了.所以我们只须求出随机变量X的分布P(X∈B). 就对随机试验进行了全面的刻画.它的研究成了概率论的研究中心课题.故而随机变量的引入是概率论发展历史中的一个重要里程碑.类似地,概率公理化定义的引进,分布函数、离散型和连续型随机变量的分类,随机变量的数学特征等概念的引进都有明确的背景,在学习中要深入理解体会.?
2. 在学习“概率论”过程中对于引入概念的内涵和相互间的联系和差异要仔细推敲,例如随机变量概念的内涵有哪些意义:它是一个从样本空间到实轴的单值实函数X(w),但它不同于一般的函数,首先它的定义域是样本空间,不同随机试验有不同的样本空间.而它的取值是不确定的,
随着试验结果的不同可取不同值,但是它取某一区间的概率又能根据随机试验予以确定的,而我们关心的通常只是它的取值范围,即对于实轴上任一B,计算概率P(X∈B),即随机变量X的分布.只有理解了随机变量的内涵,下面的概念如分布函数等等才能真正理解.又如随机事件的互不相容和相互独立两个概念通常会混淆,前者是事件的运算性质,后者是事件的概率性质,但它们又有一定联系,如果P(A)·P(B)>0,则A,B独立则一定相容.类似地,如随机变量的独立和不相关等概念的联系与差异一定要真正搞懂.?
3. 搞懂了概率论中的各个概念,一般具体的计算都是不难的,如F(x)=P(X≤x),EX,DX等按定义都易求得.计算中的难点有古典概型和几何概型的概率计算,二维随机变量的边缘分布fx(x)=∫-∞∞ f(x,y)dy,事件B的概率P((X,Y)∈B)=∫∫Bf(x,y)dxdy,卷积公式等的计算,它们形式上很简单,但是由于f(x,y)通常是分段函数,真正的积分限并不再是(-∞,∞)或B,这时如何正确确定事实上的积分限就成了正确解题的关键,要切实掌握.?
4. 概率论中也有许多习题,在解题过程中不要为解题而解题,而应理解题目所涉及的概念及解题的目的,至于具体计算中的某些技巧基本上在高等数学中都已学过.因此概率论学习的关键不在于做许多习题,而要把精力放在理解不同题型涉及的概念及解题的思路上去.这样往往能“事半功倍”.
二、 学习“数理统计”要注意以下几个要点?
1. 由于数理统计是一门实用性极强的学科,在学习中要紧扣它的实际背景,理解统计方法的直观含义.了解数理统计能解决那些实际问题.对如何处理抽样数据,并根据处理的结果作出合理的统计推断,该结论的可靠性有多少要有一个总体的思维框架,这样,学起来就不会枯燥而且容易记忆.例如估计未知分布的数学期望,就要考虑到① 如何寻求合适的估计量的途径,②如何比较多个估计量的优劣?这样,针对①按不同的统计思想可推出矩估计和极大似然估计,而针对②又可分为无偏估计、有效估计、相合估计,因为不同的估计名称有着不同的含义,一个具体估计量可以满足上面的每一个,也可能不满足.掌握了寻求估计的统计思想,具体寻求估计的步骤往往是“套路子”的,并不困难,然而如果没有从根本上理解,仅死背套路子往往会出现各种错误.?
2. 许多同学在学习数理统计过程中往往抱怨公式太多,置信区间,假设检验表格多而且记不住.事实上概括起来只有八个公式需要记忆,而且它们之间有着紧密联系,并不难记,而区间估计和假设检验中只是这八个公式的不同运用而已,关键在于理解区间估计和假设检验的统计意义,在理解基础上灵活运用这八个公式,完全没有必要死记硬背.

⑼ 概率统计知识在生活中的应用

人类在对自然界和实际生活中各类随机现象的深入研究是产生概率统计的前提和基础,从这一方面上看,概率统计脱胎于实际生活。当前,人们对概率统计的认知只是停留在浅表的层面,认为概率统计高深莫测,采用敬而远之的策略,出现了概率统计与实际生活的分离,这不但会影响概率统计的实际应用,也会使实际生活难于做出科学的判断和合理的决策。新时期的实际生活正在丰富多彩,人们应该利用概率统计这一武器,从实际生活出发,探寻概率统计应用的方法和策略,使人们的日常行为、实际生活、具体生产得到科学化的指引,做到对整个社会发展、科学、进步水平的支持与保障。
1 概率统计对于实际生活的重要价值
从概率统计的产生和发展来看,概率统计脱胎于对实际生活现象的观察,而实际生活和生产的发展也需要概率统计作为基础和手段,因此,在生活和生产中与概率统计打交道是常见的现象,社会越发达就越需要深入利用概率统计这一武器,做到对行为的控制和决策的支持。在保险工作、抽奖活动、质量判断、游戏活动等具体的生活中,概率统计有着直接而重要地应用,而大众由于没有必要的概率统计知识和手段,往往会做出非理性判断和不科学决策,最终造成对自身的不利影响。一些商家会应用概率统计的手段,通过科学、准确地概率统计实现自身的应力和利润。从上述两个层面的分析,可以理解概率统计对社会各主体的作用,也能看到概率统计对于实际生产的重要意义,因此,有必要针对实际生产和生活展开概率统计的深层次利用。
2 实际生活中概率统计的具体应用策略和方法
(1)保险工作中对概率统计的应用
某保险公司承担汽车保险业务,在保险额上限为20万元的第三者责任险中,车主缴纳1200元保险费用,如果有1000辆汽车投保,计算此保险公司盈利40万元的概率,保险公司亏本的概率是多大?假设每次交通事故保险公司理赔平均额为5万元,盈利40万元意味被保险车辆出现事故的车次不超过16次,正常情况下车辆出现事故的概率为0.005,如果盈利40万元为事件C,计算可以得知p(C)=0.99998,由此可以得知,保险公司盈利40万元的概率是相当高的。
(2)抽奖活动中对概率统计的应用
抽奖是现代市场经济常见的促销手段,很多消费者在商家的抽奖活动前会改变消费策略和方法,因此,商家愿意通过抽奖活动确保市场扩大和利润增长。而在具体的抽奖活动中,如果奖券的数量不高,很多消费者会产生错误的想法,认为后抽奖的人具有更大的中奖概率,纷纷选择靠后的抽奖顺序。如果中奖出现在抽奖的初始时期,会在消费者中产生"内部操作"的思想。这时商家应该利用概率统计的手段,说明顺序和中奖的关系,展现抽奖活动的公平性,做到对消费者正确地引导。例如:商家可以假设50张抽奖券中有5张是中奖奖券,现在有2人去抽奖,通过概率统计的准确计算,得出P(1)和P(2)通过对比P(1)和P(2)的大小,可以科学判断抽奖顺序和中奖之间没有必然的联系,进一步体现抽奖的公平,做到对消费者困惑和歧义的有效处理,建立商家更为积极的商业形象。
(3)质量判断中概率统计的应用
例如,张老师在批发市场买苹果,当询问苹果质量如何的时候,卖主说一箱苹果100个,里面至多有四五个是坏的.张老师随机打开一箱抽取了10个,结果这10个中有3个是坏的。通过概率统计可以得知,一箱苹果100个,其中5个是坏的,抽取的10个中坏苹果为3的概率为P(X=3)=0.00625,同理,P(X=4)=0.00038,P(X=5)=0.000003,根据古典概率的定义,10个苹果中坏苹果大于2的概率P(X>2)=P(X=3)+P(X=4)+P(X=5)=0.006633,苹果质量一定与买主说的不一致.
(4)游戏活动中概率统计的应用
生活中有各类娱乐和游戏活动,很多看似简单的游戏会引发人们的兴趣,例如:常见的"套圈"就是一款看似简单而实际困难的游戏,套圈游戏的规则是:在固定的距离上,投掷套圈,套圈能够套取的物品就是游戏的奖品。在实际生活中,很多人低估了游戏的难度,导致大量购买套圈,造成得不偿失的问题。
3 结语
概率统计是数学重要的知识组成,也是来源于实际和生活的方法归纳与总结,在实际应用中概率统计与生活有着紧密的联系,特别在重要的应用领域,概率统计的思想、手法和判别有着关键性的应用,不但可以为生活提供更为科学的认知,也为各类生活决策提供合理和有效的基础。