当前位置:首页 » 基础知识 » 小学数学图形与几何知识梳理课件
扩展阅读
她的微笑像什么呢歌词 2025-01-21 12:00:04
没什么基础做什么比较好 2025-01-21 12:00:01

小学数学图形与几何知识梳理课件

发布时间: 2022-07-09 03:46:43

① 小学图形与几何复习人教版知识点(教材全解)

(一)图形的认识、测量

量的计量

一、长度单位是用来测量物体的长度的。常用的长度单位有:千米、米、分米、厘米、毫米。

二、长度单位:

1千米=1000米

1米=10分米

1分米=10厘米

1厘米=10毫米

1米=100厘米

1米=1000毫米

三、面积单位是用来测量物体的表面或平面图形的大小的。常用面积单位:平方千米、公顷、平方米、平方分米、平方厘米。

四、测量和计算土地面积,通常用公顷作单位。边长100米的正方形土地,面积是1公顷。

五、测量和计算大面积的土地,通常用平方千米作单位。边长1000米的正方形土地,面积是1平方千米。

六、面积单位:(100)

1平方千米=100公顷

1公顷=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

七、体积单位是用来测量物体所占空间的大小的。常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。

八、体积单位:(1000)

1立方米=1000立方分米

1立方分米=1000立方厘米

1升=1000毫升


平面图形【认识、周长、面积】

一、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。线段、射线都是直线上的一部分。线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。

二、从一点引出两条射线,就组成了一个角。角的大小与两边叉开的大小有关,与边的长短无关。角的大小的计量单位是(°)。

三、角的分类:小于90度的角是锐角;等于90度的角是直角;大于90度小于180度的角是钝角;等于180度的角是平角;等于360度的角是周角。

四、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。

五、三角形是由三条线段围成的图形。围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。

六、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。

按边分,可以分为等边三角形、等腰三角形和任意三角形。

七、三角形的内角和等于180度。

八、在一个三角形中,任意两边之和大于第三边。

九、在一个三角形中,最多只有一个直角或最多只有一个钝角。

十、四边形是由四条边围成的图形。常见的特殊四边形有:平行四边形、长方形、正方形、梯形。

十一、圆是一种曲线图形。圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。通过圆心并且两端都在圆的线段叫做圆的直径。

十二、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形。这条直线叫做对称轴。

十三、围成一个图形的所有边长的总和就是这个图形的周长。

十四、物体的表面或围成的平面图形的大小,叫做它们的面积。

十五、平面图形的面积计算公式推导:

【1】平行四边形面积公式的推导过程

② 小学数学空间与几何的知识点,最好是100字

一、线和角
(1)线
直线
直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。
射线
射线只有一个端点;长度无限。
线段
线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。
平行线
在同一平面内,不相交的两条直线叫做平行线。
两条平行线之间的垂线长度都相等。
垂线
两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。
从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。
(2)角
从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。
角的分类
锐角:小于90°的角叫做锐角。
直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
平角:角的两边成一条直线,这时所组成的角叫做平角。平角180°。
周角:角的一边旋转一周,与另一边重合。周角是360°。
二、平面图形
1.长方形
(1)特征
对边相等,4个角都是直角的四边形。有两条对称轴。
(2)计算公式
c=2(a+b)
s=ab
2.正方形
(1)特征:
四条边都相等,四个角都是直角的四边形。有4条对称轴。
(2)计算公式
c=4a
s=a2
3.三角形
(1)特征
由三条线段围成的图形。内角和是180度。三角形具有稳定性。三角形有三条高。
(2)计算公式
s=ah/2
(3)分类
按角分
锐角三角形:三个角都是锐角。
直角三角形:有一个角是直角。等腰三角形的两个锐角各为45度,它有一条对称轴。
钝角三角形:有一个角是钝角。
按边分
不等边三角形:三条边长度不相等。
等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。
等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。
4.平行四边形
(1)特征
两组对边分别平行的四边形。
相对的边平行且相等。对角相等,相邻的两个角的度数之和为180度。平行四边形容易变形。
(2)计算公式
s=ah
5.梯形
(1)特征
只有一组对边平行的四边形。
中位线等于上下底和的一半。
等腰梯形有一条对称轴。
(2)公式
s=(a+b)h/2=mh
6.圆
(1)圆的认识
平面上的一种曲线图形。
圆中心的一点叫做圆心。一般用字母o表示。
半径:连接圆心和圆上任意一点的线段叫做半径。一般用r表示。
在同一个圆里,有无数条半径,每条半径的长度都相等。
通过圆心并且两端都在圆上的线段叫做直径。一般用d表示。
同一个圆里有无数条直径,所有的直径都相等。
同一个圆里,直径等于两个半径的长度,即d=2r。
圆的大小由半径决定。圆有无数条对称轴。
(2)圆的画法
把圆规的两脚分开,定好两脚间的距离(即半径);
把有针尖的一只脚固定在一点(即圆心)上;
把装有铅笔尖的一只脚旋转一周,就画出一个圆。
(3)圆的周长
围成圆的曲线的长叫做圆的周长。
把圆的周长和直径的比值叫做圆周率。用字母∏表示。
(4)圆的面积
圆所占平面的大小叫做圆的面积。
(5)计算公式
d=2r
r=d/2
c=∏d
c=2∏r
s=∏r2
7.扇形
(1)扇形的认识
一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
圆上AB两点之间的部分叫做弧,读作"弧AB"。
顶点在圆心的角叫做圆心角。
在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。
扇形有一条对称轴。
(2)计算公式
s=n∏r2/360
8.环形
(1)特征
由两个半径不相等的同心圆相减而成,有无数条对称轴。
(2)计算公式
s=∏(R2-r2)
9.轴对称图形
(1)特征
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
正方形有4条对称轴,长方形有2条对称轴。
等腰三角形有2条对称轴,等边三角形有3条对称轴。
等腰梯形有一条对称轴,圆有无数条对称轴。
菱形有4条对称轴,扇形有一条对称轴。
三、立体图形
(一)长方体
1.特征
六个面都是长方形(有时有两个相对的面是正方形)。
相对的面面积相等,12条棱相对的4条棱长度相等。
有8个顶点。
相交于一个顶点的三条棱的长度分别叫做长、宽、高。
两个面相交的边叫做棱。
三条棱相交的点叫做顶点。
把长方体放在桌面上,最多只能看到三个面。
长方体或者正方体6个面的总面积,叫做它的表面积。
2.计算公式
s=2(ab+ah+bh)
V=sh
V=abh
(二)正方体
1.特征
六个面都是正方形
六个面的面积相等
12条棱,棱长都相等
有8个顶点
正方体可以看作特殊的长方体
2.计算公式
S表=6a2
v=a3
(三)圆柱
1.圆柱的认识
圆柱的上下两个面叫做底面。
圆柱有一个曲面叫做侧面。
圆柱两个底面之间的距离叫做高。
进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。
2.计算公式
s侧=ch
s表=s侧+s底×2
v=sh/3
(四)圆锥
1.圆锥的认识
圆锥的底面是个圆,圆锥的侧面是个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高。
测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。
把圆锥的侧面展开得到一个扇形。
2.计算公式
v=sh/3
(五)球
1.认识
球的表面是一个曲面,这个曲面叫做球面。
球和圆类似,也有一个球心,用O表示。
从球心到球面上任意一点的线段叫做球的半径,用r表示,每条半径都相等。
通过球心并且两端都在球面上的线段,叫做球的直径,用d表示,每条直径都相等,直径的长度等于半径的2倍,即d=2r。
2.计算公式
d=2r

③ 小学数学说课课件

《说课|小学数学说课|北师大版-教案》网络网盘资源免费下载

链接:https://pan..com/s/1knNAgBxGw_KAzm7vkv9dnA

提取码:5dea


说课|小学数学说课|北师大版-教案|1-小学说课示范语音|1-6年级人教版说课稿|小学说课讲义.pdf|下载前必看,关注下载更多.jpg|下载前必看,关注下载更多免费实用教学资源.jpg|9人教版新课标《小学数学+五年级上册》教案说课稿.doc|8人教版新课标《小学数学+四年级下册》教案说课稿.doc|7人教版新课标《小学数学+四年级上册》教案说课稿.doc|6人教版新课标《小学数学+三年级下册》教案说课稿.doc|5人教版新课标《小学数学+三年级上册》教案说课稿.doc|4人教版新课标《小学数学+二年级下册》教案说课稿.doc|3人教版新课标《小学数学+二年级上册》教案说课稿.doc

④ 小学数学图形与几何包括哪些内容

平面图形:线段,三角形,正方形,长方形,平行四边形,梯形,圆,扇形等,
立体图形:立方体,长方体,圆柱体,圆锥体

⑤ 图形与几何知识点整理

图形于几何包含:图形的认识,图形的运动,测量,图形与位置。

图形是指在二维空间中以轮廓为界限的空间碎片,在一个二维空间中可以用轮廓划分出若干的空间形状,图形是空间的一部分,不具有空间的延展性,它是局限的可识别的形状。图形区别于标记、标志与图案,它既不是一种单纯的符号,更不是单一以审美为目的的一种装饰,而是在特定的思想意识支配下的某一个或多个视觉元素组合的一种蓄意的刻画和表达形式。

⑥ 图形与几何的知识点有哪些

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形;立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体

(1)几何图形的组成,点:线和线相交的地方是点,它是几何图形中最基本的图形;线:面和面相交的地方是线,分为直线和曲线;面:包围着体的是面,分为平面和曲面;(2)点动成线,线动成面,面动成体。

3、生活中的立体图形

圆柱(圆柱的侧面是曲面,底面是圆)、生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、(棱柱的侧面是若干个小长方形构成,底面是多边形)、(按名称分) 锥 圆锥(圆锥的侧面是曲面,底面的圆)、棱锥(棱锥的侧面是若干个三角形构成,底面是多边形)。

4、棱柱及其有关概念:

棱:在棱柱中,任何相邻两个面的交线,都叫做棱;侧棱:相邻两个侧面的交线叫做侧棱;n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱、n条侧棱;2n个顶点。

5、正方体的平面展开图:11种

截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形;可能出现的:锐角三角形、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、 非等腰梯形、 等腰梯形、五边形、六边形、正六边形。

不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形。

⑦ 《图形与几何》教学课件的选用与制作应注意什么

2011年版数学课程标准把课程内容分为四个部分,数与代数、图形与几何、统计与概率、综合与应用。图形与几何又分为四类,图形的认识、测量、图形的运动、图形与位置。今天北团中小马清群老师和朋口中小胡秀清老师上的《锐角和钝角》就是属于“图形的认识”。我今天就以《图形与几何》的教学应注意的几个问题为题,跟大家一起交流。
一、让学生在生活情景中感知图形的特征。
《数学课程标准》十分强调数学与现实生活的联系,在教学目标中指出:体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,因此,不仅要求选材必须密切联系学生生活实际,而且要求数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,为他们提供观察和操作的机会。在教学中努力把课堂教学同生活实际联系起来,在数学教学中创设生活情境,让学生在现实情境中体验和理解数学,感受数学带来的快乐。
心理学研究表明,当学习内容和学生熟悉的生活实际越贴近,学生自觉接纳知识的程度越高。根据这一特点,在讲授新课内容之前,一般借用有关生活实例,为学生创设与教学内容有关的情境,提出相关的问题,以引起学生的好奇与思考,激发学生学习兴趣和求知欲。
比如,今天这两节课教师都能从生活中引入角,特别是胡秀清老师这节课还很重视让学生在教室里找出锐角和钝角与直角,让学生体会到数学有用,数学就在身边。
这一生活情境的创设激发了学生们展示自己成果的欲望,更加积极主动的投入到学习中。从学生生活实际入手导入新课,不仅让学生感受到数学无处不在,而且也增强了学生理解和应用数学的信心,同时又强有力地激发了学生的兴趣,调动其学习的积极性。
二、让学生在主动参与中获取对图形的认识。
课标在课程基本理念中明确指出:“学生学习应当是一个生动活泼的、主动和富有个性的过程。认真听讲、积极思考、动手实践、自主探索、合作交流等,都是学习数学的重要方式。”《锐角和钝角》一课是在学生已经学会如何辨认角和直角的基础上,进一步拓展角的外延,对角进行分类,使学生充分感知锐角和钝角。从认知层面来讲,学生知道哪些是锐角,哪些是钝角并不困难。但是,在探求为何这样分类、怎样操作上是有难度的,并且在此基础上让学生更深入地思维,是值得考虑的。比直角大一点的钝角和比直角小一点的锐角,学生只通过观察很难正确判断,这是就要用三角板中的直角比一比,在这一点上如何让学生动手比一比,今天这两节课的教学在这一点上都没有到位,而是教师操作得多或用媒体演示得多。

⑧ 小学所有几何图形的认识知识整理

(一)空间与图形-图形的认识与测量
这部分需要着重复习:
①小学阶段所学习的“五线”、“五角”、“七形”、“四体”的认识和特征;
②测量和测量单位的有关知识,平面图形的周长和面积、立体图形的表面积和体积;
③观察物体的相关知识。
(二)空间与图形-图形的位置与变换
这部分需要着重复习:
①轴对称图形、平移、旋转三种基本的几何变换;
②确定位置的几种方法。方向与位置的要点是方向角度(特别是谁偏谁多少度)和距离、数对、线路图和比例尺的相关知识。
③掌握作图操作,利用比例的知识计算面积等知识。
一、平面图形
(一)“五线”——线段、射线、直线、垂线、平行线。
过一点可以画出无数条射线。过一点可以画出无数直线。过两点只能画出一条直线。
(二)“五角”——锐角、直角、钝角、平角、周角。
1、角的定义:从一点引出两条射线,所组成的图形叫做角。
①这个点叫做角的顶点,这两条射线叫做角的边;
②角的大小与角的两边叉开的大小有关、角的大小与所画角的边的长短无关;
③角用“ ∠”表示;
④计量角的大小单位是“度”,用“ °”表示。
2、角的分类
锐角:小于90°的角叫做锐角。 直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
平角:角的两边成一条直线,这时所组成的角叫做平角。平角180°。
周角:角的一边旋转一周,与另一边重合。周角是360°。
3、画角和量角
如果让我们任意画一个角,用直尺就可以了;要画一个指定度数的角就必须用量角器画。
①先画一条射线,使量角器的中心和射线的端点重合,零刻度线和射线重合;
②在量角器所画角刻度线的地方点一点;
③以射线的端点为端点,通过刚画的点,再画一条射线。
(三)“七形”——三角形、长方形、正方形、平行四边形、梯形、圆、扇形。

⑨ 小学图形与几何知识点有哪些

小学图形与几何知识点有如下:

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形;立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体

几何图形的组成,点:线和线相交的地方是点,它是几何图形中最基本的图形;线:面和面相交的地方是线,分为直线和曲线;面:包围着体的是面,分为平面和曲面。

3、生活中的立体图形

圆柱(圆柱的侧面是曲面,底面是圆)、生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、(棱柱的侧面是若干个小长方形构成,底面是多边形)、(按名称分) 锥 圆锥(圆锥的侧面是曲面,底面的圆)、棱锥(棱锥的侧面是若干个三角形构成,底面是多边形)。

4、棱柱及其有关概念:

棱:在棱柱中,任何相邻两个面的交线,都叫做棱;侧棱:相邻两个侧面的交线叫做侧棱;n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱、n条侧棱;2n个顶点。

5、正方体的平面展开图:11种

截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形;可能出现的:锐角三角形、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、 非等腰梯形、 等腰梯形、五边形、六边形、正六边形。

不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形。