当前位置:首页 » 基础知识 » 高一数学知识点指数
扩展阅读
带一定的歌词有哪些 2024-11-15 13:05:42
荷致和爱他美经典哪个好 2024-11-15 13:02:40

高一数学知识点指数

发布时间: 2022-07-08 05:14:34

❶ 高一数学学什么

高一上学期有的地方是学习必修一和必修四,必修一的主要内容是《集合》、《函数》,必修四的主要内容是《三角函数》、《向量》。但是有些地方是学习必修一和必修二,必修二的主要内容是《立体几何》,简单的《解析几何》。如初中所学习的直线方程,园的方程以及他们的一些性质关系等。
在高一上学期,必修一是一定要学的,函数这一章一定要学好,它包括函数的概念,图像,性质以及一些基本函数,如二次函数,指数函数,对数函数,幂函数等
必修三中的内容要简单一些,包括《统计初步》、《算法》、《概率》。除
了算法外,其他内容我们在初中都已经接触过。
到了高二要学习必修五,主要内容是《数列》,《不等式》等,对于我们在高一学习的解析几何,到了高二还要学《圆锥曲线》等。当然,函数与导数,参数方程与极坐标也应该是高二学习的内容。地方不同,还有些选学的内容也不同。
高三嘛,进入总复习阶段了。

❷ 高一至高二数学知识整理

(一)

一 集合与简易逻辑
集合具有四个性质 广泛性 集合的元素什么都可以
确定性 集合中的元素必须是确定的,比如说是好学生就不具有这种性质,因为它的概念是模糊不清的
互异性 集合中的元素必须是互不相等的,一个元素不能重复出现
无序性 集合中的元素与顺序无关
二 函数
这是个重点,但是说起来也不好说,要作专题训练,比如说二次函数,指数对数函数等等做这一类型题的时候,要掌握几个函数思想如 构造函数 函数与方程结合 对称思想,换元等等
三 数列
这也是个比较重要的题型,做体的时候要有整体思想,整体代换,等比等差要分开来,也要注意联系,这样才能做好,注意观察数列的形式判断是什么数列,还要掌握求数列通向公式的几种方法,和求和公式,求和方法,比如裂项相消,错位相减,公式法,分组求和法等等
四 三角函数
三角函数不是考试题型,只是个应用的知识点,所以只要记熟特殊角的三角函数值和一些重要的定理就行
五 平面向量
这是个比较抽象的把几何与代数结合起来的重难点,结体的时候要有技巧,主要就是把基本知识掌握到位,注意拓展,另外要多做题,见的题型多,结体的时候就有思路,能够把问题简单化,有利于提高做题效率
高一的数学只是入门,只要把基础的掌握了,做题就没什么大问题了,数学就可以上130

(二)
一、集合、简易逻辑(14课时,8个)1.集合; 2.子集; 3.补集; 4.交集; 5.并集; 6.逻辑连结词; 7.四种命题; 8.充要条件.二、函数(30课时,12个)1.映射; 2.函数; 3.函数的单调性; 4.反函数; 5.互为反函数的函数图象间的关系; 6.指数概念的扩充; 7.有理指数幂的运算; 8.指数函数; 9.对数; 10.对数的运算性质; 11.对数函数. 12.函数的应用举例.三、数列(12课时,5个)1.数列; 2.等差数列及其通项公式; 3.等差数列前n项和公式; 4.等比数列及其通顶公式; 5.等比数列前n项和公式.四、三角函数(46课时17个)1.角的概念的推广; 2.弧度制; 3.任意角的三角函数; 4,单位圆中的三角函数线; 5.同角三角函数的基本关系式; 6.正弦、余弦的诱导公式’ 7.两角和与差的正弦、余弦、正切; 8.二倍角的正弦、余弦、正切; 9.正弦函数、余弦函数的图象和性质;10.周期函数; 11.函数的奇偶性; 12.函数 的图象; 13.正切函数的图象和性质; 14.已知三角函数值求角; 15.正弦定理; 16余弦定理; 17斜三角形解法举例.五、平面向量(12课时,8个)1.向量 2.向量的加法与减法 3.实数与向量的积; 4.平面向量的坐标表示; 5.线段的定比分点; 6.平面向量的数量积; 7.平面两点间的距离; 8.平移.六、不等式(22课时,5个)1.不等式; 2.不等式的基本性质; 3.不等式的证明; 4.不等式的解法; 5.含绝对值的不等式.七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率; 2.直线方程的点斜式和两点式; 3.直线方程的一般式; 4.两条直线平行与垂直的条件; 5.两条直线的交角; 6.点到直线的距离; 7.用二元一次不等式表示平面区域; 8.简单线性规划问题. 9.曲线与方程的概念;10.由已知条件列出曲线方程; 11.圆的标准方程和一般方程; 12.圆的参数方程.八、圆锥曲线(18课时,7个)1椭圆及其标准方程; 2.椭圆的简单几何性质; 3.椭圆的参数方程; 4.双曲线及其标准方程; 5.双曲线的简单几何性质; 6.抛物线及其标准方程; 7.抛物线的简单几何性质.九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质; 2.平面图形直观图的画法; 3.平面直线; 4.直线和平面平行的判定与性质; 5,直线和平面垂直的判与性质; 6.三垂线定理及其逆定理; 7.两个平面的位置关系; 8.空间向量及其加法、减法与数乘; 9.空间向量的坐标表示; 10.空间向量的数量积; 11.直线的方向向量; 12.异面直线所成的角; 13.异面直线的公垂线; 14异面直线的距离; 15.直线和平面垂直的性质; 16.平面的法向量; 17.点到平面的距离; 18.直线和平面所成的角; 19.向量在平面内的射影; 20.平面与平面平行的性质; 21.平行平面间的距离; 22.二面角及其平面角; 23.两个平面垂直的判定和性质; 24.多面体; 25.棱柱; 26.棱锥; 27.正多面体; 28.球.十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理. 2.排列; 3.排列数公式’ 4.组合; 5.组合数公式; 6.组合数的两个性质; 7.二项式定理; 8.二项展开式的性质.十一、概率(12课时,5个)1.随机事件的概率; 2.等可能事件的概率; 3.互斥事件有一个发生的概率; 4.相互独立事件同时发生的概率; 5.独立重复试验.选修Ⅱ(24个)十二、概率与统计(14课时,6个)1.离散型随机变量的分布列; 2.离散型随机变量的期望值和方差; 3.抽样方法; 4.总体分布的估计; 5.正态分布; 6.线性回归.十三、极限(12课时,6个)1.数学归纳法; 2.数学归纳法应用举例; 3.数列的极限; 4.函数的极限; 5.极限的四则运算; 6.函数的连续性.十四、导数(18课时,8个)1.导数的概念; 2.导数的几何意义; 3.几种常见函数的导数; 4.两个函数的和、差、积、商的导数; 5.复合函数的导数; 6.基本导数公式; 7.利用导数研究函数的单调性和极值; 8函数的最大值和最小值.十五、复数(4课时,4个)1.复数的概念; 2.复数的加法和减法; 3.复数的乘法和除法 答案补充高中数学有130个知识点,从前一份试卷要考查90个知识点,覆盖率达70%左右,而且把这一项作为衡量试卷成功与否的标准之一.这一传统近年被打破,取而代之的是关注思维,突出能力,重视思想方法和思维能力的考查. 现在的我们学数学比前人幸福啊!! 最后,我建议你经常上这个网站啦,www.pep.com.cn ,相信对你的学习会有帮助的,祝你成功! 答案补充一试 全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。 二试 1、平面几何 基本要求:掌握初中数学竞赛大纲所确定的所有内容。 补充要求:面积和面积方法。 几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。 几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点,重心。三角形内到三边距离之积最大的点,重心。 几何不等式。 简单的等周问题。了解下述定理: 在周长一定的n边形的集合中,正n边形的面积最大。 在周长一定的简单闭曲线的集合中,圆的面积最大。 在面积一定的n边形的集合中,正n边形的周长最小。 在面积一定的简单闭曲线的集合中,圆的周长最小。 几何中的运动:反射、平移、旋转。 复数方法、向量方法。 平面凸集、凸包及应用。 答案补充第二数学归纳法。 递归,一阶、二阶递归,特征方程法。 函数迭代,求n次迭代,简单的函数方程。 n个变元的平均不等式,柯西不等式,排序不等式及应用。 复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。 圆排列,有重复的排列与组合,简单的组合恒等式。 一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。 简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。 3、立体几何 多面角,多面角的性质。三面角、直三面角的基本性质。 正多面体,欧拉定理。 体积证法。 截面,会作截面、表面展开图。 4、平面解析几何 直线的法线式,直线的极坐标方程,直线束及其应用。 二元一次不等式表示的区域。 三角形的面积公式。 圆锥曲线的切线和法线。 圆的幂和根轴。

弄得有些乱哈,那个关键梳理知识点,然后还是看例题,把知识点融会贯通,然后,没事儿就把书上的知识点和公式,自己重新做一遍笔记,这样可以加深记忆,这个是我上高中时候的学习方法,效果还可以,我每次几乎都是满分的,其实关键还是找到适合自己的方法,祝你学习的更好啊

❸ 高中数学知识点总结

《高中数学基础知识梳理(数学小飞侠)》网络网盘免费下载

链接:

提取码: i8i2

资源目录

01.集合例题讲解.mp4

01.集合进阶.mp4

02函数的值域.mp4

03函数的定义域与解析式.mp4

04函数的单调性.mp4

04函数的奇偶性.mp4

05指数运算与指数函数.mp4

07对数运算与对数函数.mp4

08幂函数突破.mp4

09函数零点专题.mp4

10含参二次函数与不等式专题.mp4

11二次函数根的分布专题.mp4

12空间几何体.mp4

13点线面位置关系进阶.mp4

14平行关系突破.mp4

15垂直关系突破.mp4

16空间几何关系综合.mp4

17直线方程突破.mp4

18圆的方程突破.mp4

19算法初步.mp4

20算法语句与算法案例.mp4

21数据的收集与频率分布.mp4

22常用统计量与相关关系.mp4

23古典概型概率.mp4

24几何概型概率.mp4

25任意角重难点.mp4

26三角函数定义与诱导公式.mp4

27三角函数图像及性质.mp4

28平面向量几何运算.mp4

29平面向量代数运算.mp4

30.三角恒等变换.mp4

31.三角函数计算专题.mp4

32.正弦定理与余弦定理.mp4

33.等差数列突破.mp4

34.等比数列突破.mp4

35.数列通项公式专题 .mp4

36.数列求和公式专题 .mp4

37.二次不等式与分式不等式.mp4

38.线性规划问题.mp4

39.基本不等式突破.mp4

40.逻辑用语专题.mp4

41.椭圆方程及其几何性质.mp4

42.双曲线方程及其性质.mp4

43.抛物线方程及其性质.mp4

44.直线与圆锥曲线综合.mp4

45.空间向量突破.mp4

46.导数的计算专题.mp4

47.导数的应用.mp4

48.导数的应用(二).mp4

49.定积分与微积分.mp4

50.复数专题.mp4

51.排列组合.mp4

52.二项式定理.mp4

53.随机变量及其变量.mp4

54回归分析与独立性检验.mp4

资源目录

01.集合例题讲解.mp4

01.集合进阶.mp4

02函数的值域.mp4

03函数的定义域与解析式.mp4

04函数的单调性.mp4

04函数的奇偶性.mp4

05指数运算与指数函数.mp4

07对数运算与对数函数.mp4

08幂函数突破.mp4

09函数零点专题.mp4

10含参二次函数与不等式专题.mp4

11二次函数根的分布专题.mp4

12空间几何体.mp4

13点线面位置关系进阶.mp4

14平行关系突破.mp4

15垂直关系突破.mp4

16空间几何关系综合.mp4

17直线方程突破.mp4

18圆的方程突破.mp4

19算法初步.mp4

20算法语句与算法案例.mp4

21数据的收集与频率分布.mp4

22常用统计量与相关关系.mp4

23古典概型概率.mp4

24几何概型概率.mp4

25任意角重难点.mp4

26三角函数定义与诱导公式.mp4

27三角函数图像及性质.mp4

28平面向量几何运算.mp4

29平面向量代数运算.mp4

30.三角恒等变换.mp4

31.三角函数计算专题.mp4

32.正弦定理与余弦定理.mp4

33.等差数列突破.mp4

34.等比数列突破.mp4

35.数列通项公式专题 .mp4

36.数列求和公式专题 .mp4

37.二次不等式与分式不等式.mp4

38.线性规划问题.mp4

39.基本不等式突破.mp4

40.逻辑用语专题.mp4

41.椭圆方程及其几何性质.mp4

42.双曲线方程及其性质.mp4

43.抛物线方程及其性质.mp4

44.直线与圆锥曲线综合.mp4

45.空间向量突破.mp4

46.导数的计算专题.mp4

47.导数的应用.mp4

48.导数的应用(二).mp4

49.定积分与微积分.mp4

50.复数专题.mp4

51.排列组合.mp4

52.二项式定理.mp4

53.随机变量及其变量.mp4

54回归分析与独立性检验.mp4

❹ 高中数学,指数函数,,。什么叫做指数取遍全体实数时幂数才能取到全体正数指数函数知识点会涉及幂数

你这个没有表达清楚吧,应该是对数函数。问题应该这样理解的。举个例子,对于指数函数y=f(x)=eˣ,x∈(-∞,+∞),那么其对应的反函数

y=f⁻¹(x)=lnx,x∈(0,+∞)。

所以当指数函数y=f(x)的自变量x能取遍全体实数,y取遍全体正实数时,此时y=f(x)d的反函数——对数函数y=f⁻¹(x)=lnx的自变量x也就能取遍全体正实数,y就取遍全体实数。

❺ 高一数学 指数难题

这个题目是这样的:令m=a1/3,n=b1/3,则有:m2+n2=4
m3+3mn2=x n3+3m2n=y
x+y=m3+3mn2+3m2n+n3=(m+n)3 x-y=m3+3mn2-3m2n-n3=(m-n)3
(x+y)2/3+(x-y)2/3=(m+n)2+(m-n)2=2(m2+n2)=8

❻ 指数函数知识点

指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为e,这里的e是数学常数,就是自然对数的底数,近似等于2.718281828,还称为欧拉数。

当a>1时,指数函数对于x的负数值非常平坦,对于x的正数值迅速攀升,在x等于0的时候等于1。当0<a<1时,指数函数对于x的负数值迅速攀升,对于x的正数值非常平坦,在x等于0的时候等于1。在x处的切线的斜率等于此处y的值乘上lna。即由导数知识:d(a^x)/dx=a^x*ln(a)。

作为实数变量x的函数,y=e^x的图像总是正的(在x轴之上)并递增(从左向右看)。它永不触及x轴,尽管它可以任意程度的靠近它(所以,x轴是这个图像的水平渐近线。它的反函数是自然对数ln(x),它定义在所有正数x上。

有时,尤其是在科学中,术语指数函数更一般性的用于形如kax的


指数函数

函数,这里的a叫做“底数”,是不等于1的任何正实数。本文最初集中于带有底数为欧拉数e的指数函数。

指数函数的一般形式为y=a^x(a>0且≠1)(x∈R),从上面我们关于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得

如图所示为a的不同大小影响函数图形的情况。

在函数y=a^x中可以看到:

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑,

同时a等于0函数无意义一般也不考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凸的。

(4)a大于1时,则指数函数单调递增;若a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过


指数函数

程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,并且永不相交。

(7)函数总是通过(0,1)这点,(若y=a^x+b,则函数定过点(0,1+b)

(8)显然指数函数无界。

(9)指数函数既不是奇函数也不是偶函数。

(10)当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

(11)当指数函数中的自变量与因变量一一映射时,指数函数具有反函数。

编辑本段公式推导

e的定义:e=lim(x→∞)(1+1/x)^x=2.718281828...

设a>0,a!=1----(loga(x))'

=lim(Δx→∞)((loga(x+Δx)-loga(x))/Δx)

=lim(Δx→∞)(1/x*x/Δx*loga((x+Δx)/x))

=lim(Δx→∞)(1/x*loga((1+Δx/x)^(x/Δx)))

=1/x*lim(Δx→∞)(loga((1+Δx/x)^(x/Δx)))

=1/x*loga(lim(Δx→0)(1+Δx/x)^(x/Δx))

=1/x*loga(e)特殊地,

当a=e时,

(loga(x))'=(lnx)'=1/x。

设y=a^x两边取对数lny=xlna两边对求x

导y'/y=lnay'=ylna=a^xlna特殊地,

当a=e时,y'=(a^x)'=(e^x)'=e^xlne=e^x。

编辑本段函数图像

指数函数

(1)由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。

(2)由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。

(3)指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低”。(如右图)》。

编辑本段幂的比较

比较大小常用方法:(1)比差(商)法:(2)函数单调性法;(3)中间值法:要比较A与B的大小,先找一个中间值C,再比较A与C、B与C的大小,由不等式的传递性得到A与B之间的大小。

比较两个幂的大小时,除了上述一般方法之外,还应注意:

(1)对于底数相同,指数不同的两个幂的大小比较,可以利用指数函数的单调性来判断。

例如:y1=3^4,y2=3^5,因为3大于1所以函数单调递增(即x的值越大,对应的y值越大),因为5大于4,所以y2大于y1。

(2)对于底数不同,指数相同的两个幂的大小比较,可


指数函数

以利用指数函数图像的变化规律来判断。

例如:y1=1/2^4,y2=3^4,因为1/2小于1所以函数图像在定义域上单调递减;3大于1,所以函数图像在定义域上单调递增,在x=0是两个函数图像都过(0,1)然后随着x的增大,y1图像下降,而y2上升,在x等于4时,y2大于y1.

(3)对于底数不同,且指数也不同的幂的大小比较,则可以利用中间值来比较。如:

<1>对于三个(或三个以上)的数的大小比较,则应该先根据值的大小(特别是与0、1的大小)进行分组,再比较各组数的大小即可。

<2>在比较两个幂的大小时,如果能充分利用“1”来搭“桥”(即比较它们与“1”的大小),就可以快速的得到答案。那么如何判断一个幂与“1”大小呢?由指数函数的图像和性质可知“同大异小”。即当底数a和1与指数x与0之间的不等号同向(例如:a〉1且x〉0,或0〈a〈1且x〈0)时,a^x大于1,异向时a^x小于1.

〈3〉例:下列函数在R上是增函数还是减函数?说明理由.

⑴y=4^x

因为4>1,所以y=4^x在R上是增函数;

⑵y=(1/4)^x

因为0<1/4<1,所以y=(1/4)^x在R上是减函数

编辑本段定义域

指代一切实数(-∞,+∞),就是R。

编辑本段值域

对于一切指数函数y=a^x来讲。他的a满足a>0且a≠1,即说明y>0。所以值域为(0,+∞)。a=1时也可以,此时值域恒为1。

编辑本段化简技巧

(1)把分子、分母分解因式,可约分的先约分

(2)利用公式的基本性质,化繁分式为简分式,化异分母为同分母

(3)把其中适当的几个分式先化简,重点突破.


指数函数

(4)可考虑整体思想,用换元法使分式简化

编辑本段对应关系

(1)曲线沿x轴方向向左无限延展〈=〉函数的定义域为(-∞,+∞)。

(2)曲线在x轴上方,而且向左或向右随着x值的减小或增大无限靠


指数函数

近X轴(x轴是曲线的渐近线)〈=〉函数的值域为(0,+∞)

(3)曲线过定点(0,1)〈=〉x=0时,函数值y=a^0(零次方)=1(a>0且a≠1)

(4)a>1时,曲线由左向右逐渐上升即a>1时,函数在(-∞,+∞)上是增函数;0<a<1时,曲线逐渐下降即0<a<1时,函数在(-∞,+∞)上是减函数。

编辑本段概念

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。[1]

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

词条图册更多图册

词条图(7张)

参考资料
  • 1. 高一数学知识点归纳:指数函数、函数奇偶性.高考网[引用日期2012-10-20]

❼ 高中数学对数与指数的公式

1对数
①负数和零没有对数;
②a>0且a≠1,N>0;
③loga1=0,logaa=1,alogaN=N,logaab=b.
特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN.
2对数式与指数式的互化
对数的运算性质
如果a>0,a≠1,M>0,N>0,那么
(1)loga(MN)=logaM+logaN.
(2)logaMN=logaM-logaN.
(3)logaMn=nlogaM (n∈R).
2.指数
指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:a^b=N�logaN=b.

❽ 高中数学指数化简公式

首先我们先了解一下对数和指数的概念。对数函数的表达式为:y=loga x,(其中a>0且a≠1,x>0),a为底数,x为真数。指数函数的表达式为:y=a^x,(其中a>0且a≠1),a为底数,x为指数。常见的高中指数化简公式有:am×an=a9(m+n)、am÷an=a(m+n) (am)n=amn=(an)m a0=1 (b/a)=an/bn (ab)n=an×bn a-p=1/ap等等