当前位置:首页 » 基础知识 » 人教版七年级上数学知识点总结
扩展阅读
国开什么意思教育 2025-01-21 18:56:15
网上怎么定儿童机票 2025-01-21 18:51:12
同学两亿岁好在哪里 2025-01-21 18:51:03

人教版七年级上数学知识点总结

发布时间: 2022-07-08 01:23:48

① 人教版数学初一上册第四章中考知识点有哪些

除了课堂上的学习外,数学知识点也是学生提高数学成绩的重要途径,本文为大家提供了初一上册数学第四章图形认识初步知识点,希望对大家的学习有一定帮助。

【知识点归纳】

一、多姿多彩的图形

1.从实物中抽象出的各种图形统称为几何图形。

2.点、线、面、体

A.点:线和线相交的地方。

B.线:面和面相交的地方,线可分为直线、射线、线段

C.体:正方体、长方体、圆柱、球等都是几何体,几何体简称体。

D.面:包围着体的是面,面可分为平的面、曲的面。

二、直线、射线、线段

1.两点确定一条直线

2.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

3.两点之间,线段最短。

4.连接两点间的线段的长度,叫做这两点的距离。

三、角

1.有且只有一个角

2.把一个周角360等分,每一份就是一度的角,记做1°﹔把1度的角60等分,每一份叫做1分的角,记作1′﹔把1分的角60等分,每一份叫做1秒的角,记作1″。

3.角的运算:1周角=360°,1平角=180°,1°=60′,1′=60″

4.角的平分线:A.从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。

B.角平分线上的一点到角的两边距离相等。

四、线段、射线和直线的联系与区别

联系:线段、射线、直线是部分与整体的关系.线段向一方无限延长形成了射线,向两个方向无限延长得到了直线.直线上的两点和它们之间的部分组成线段,直线上的一点及其一旁的部分是射线,射线反向延长得直线.

小编为大家整理的初一上册数学第四章图形认识初步知识点相关内容大家一定要牢记,以便不断提高自己的数学成绩,祝大家学习愉快!

② 人教版【初中数学】知识点总结-全面整理(超全)

《初中数学|升级版人教版初中数学七年级下册》网络网盘资源免费下载

链接:https://pan..com/s/1Aqd2mzuHw21jbIBsyK9EUQ

提取码:65qa

初中数学|升级版人教版初中数学七年级下册|升级版人教版初中数学七年级上册|升级版人教版初中数学九年级下册|升级版人教版初中数学九年级上册|升级版人教版初中数学八年级下册|升级版人教版初中数学八年级上册|人教版初中数学7年级上册|数学初中2上15.4因式分解(一).rmvb|数学初中2上15.4因式分解(二).rmvb|数学初中2上15.3同底数幂的除法.rmvb|数学初中2上15.2乘法公式.rmvb|数学初中2上15.1整式的乘法(一).rmvb|数学初中2上15.1整式的乘法(二).rmvb|数学初中2上14.4选择方案(一).rmvb

③ 人教版初一数学上下册知识点总结

初一数学(上)应知应会的知识点
代数初步知识
1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.
2.列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;
(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .
3.几个重要的代数式:(m、n表示整数)
(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;
(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;
(4)若b>0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .
有理数
1.有理数:
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;
(2)有理数的分类: ① ②
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数 0和正整数;a>0 a是正数;a<0 a是负数;
a≥0 a是正数或0 a是非负数;a≤ 0 a是负数或0 a是非正数.
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
(3)相反数的和为0 a+b=0 a、b互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2) 绝对值可表示为:或 ;绝对值的问题经常分类讨论;
(3) ; ;
(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|, .
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1 a、b互为倒数;若ab=-1 a、b互为负倒数.
7. 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
10 有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
11 有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
(3)a2是重要的非负数,即a2≥0;若a2+|b|=0 a=0,b=0;

(4)据规律 底数的小数点移动一位,平方数的小数点移动二位.

15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.
18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.
19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.
整式的加减
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.
5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.
整式分类为: .
6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.
7.合并同类项法则:系数相加,字母与字母的指数不变.
8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.
9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.
10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.
一元一次方程
1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!
2.等式的性质:
等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;
等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.
3.方程:含未知数的等式,叫方程.
4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!
5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.
6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).
8.一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a≠0).
9.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).
10.列一元一次方程解应用题:
(1)读题分析法:………… 多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.
(2)画图分析法: ………… 多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.
11.列方程解应用题的常用公式:
(1)行程问题: 距离=速度·时间 ;
(2)工程问题: 工作量=工效·工时 ;
(3)比率问题: 部分=全体·比率 ;
(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;
(5)商品价格问题: 售价=定价·折· ,利润=售价-成本, ;
(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a,
S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥=πR2h

④ 人教版七年级上册数学概念

第一章 有理数
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。

第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。

3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。

3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。

第四章 数据的收集与整理
收集、整理、描述和分析数据是数据处理的基本过程

⑤ 人教版 初一上册数学知识点 是什么

重点是在一元一次方程和最后的几何,像前面的实数还有一些代数,其实很简单的

⑥ 人教版初中数学七年级上知识点总结(新)(全)

万门大学崔亮基础班初中数学七年级上(超清视频)网络网盘

链接:

提取码: mm7k

若资源有问题欢迎追问~

⑦ 求七年级上册数学段考复习资料

《初中数学华师大版七年级上册》网络网盘免费资源下载

链接: https://pan..com/s/1bqeovtCC8e9k6ShcnIq9oA

?pwd=y83e 提取码: y83e

⑧ 七年级上册人教版数学复习资料 人教版哦!

第一章 有理数

1.1 正数与负数

①正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)

②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。

③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等

1.2 有理数

1.有理数(1)整数:正整数、0、负整数统称整数(integer),

(2)分数;正分数和负分数统称分数(fraction)。

(3)有理数;整数和分数统称有理数(rational number). 以用m/n(其中m,n是整数,n≠0)表示有理数。

2.数轴

(1)定义 :通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

(2)数轴三要素:原点、正方向、单位长度。

(3)原点:在直线上任取一个点表示数0,这个点叫做原点(origin)。

(4)数轴上的点和有理数的关系:

所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。从几何意义上讲,数的绝对值是两点间的距离。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3 有理数的加减法

①有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

加法的交换律和结合律

②有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法

①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

乘积是1的两个数互为倒数。乘法交换律/结合律/分配律

②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

1.5 有理数的乘方

求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a <10。

从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。四舍五入遵从精确到哪一位就从这一位的下一位开始,而不是从数字的末尾往前四舍五入。比如:3.5449精确到0.01就是3.54而不是3.55.

第二章 整式的加减

2.1 整式

单项式:由数字和字母乘积组成的式子。系数,单项式的次数. 单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.

单项式的系数:是指单项式中的数字因数;

单项数的次数:是指单项式中所有字母的指数的和.

多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。多项式的次数是指多项式里次数最高项的次数,这里 是次数最高项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包括它前面的性质符号.

它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

单项式和多项式统称为整式。

2.2整式的加减

同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关

合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

合并同类项法则:

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;

字母的升降幂排列:按某个字母的指数从小(大)到大(小)的顺序排列。

如果括号外的因数是正(负)数,去括号后原括号内各项的符号与原来的符号相同(反)。

整式加减的一般步骤:

1、如果遇到括号按去括号法则先去括号. 2、结合同类项. 3、合并同类项

2.3整式的乘法法则 :

单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式 ;

单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。

多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

2.4整式的除法法则

单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。

http://zhongkao.juren.com/news/201301/367351.html

⑨ 人教版七年级数学上知识点归纳

七年级数学(下)期末复习知识点整理
5.1相交线

1、邻补角与对顶角

两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:

图形

顶点

边的关系

大小关系



对顶角



∠1与∠2

有公共顶点

∠1的两边与∠2的两边互为反向延长线

对顶角相等

即∠1=∠2



邻补角



∠3与∠4

有公共顶点

∠3与∠4有一条边公共,另一边互为反向延长线。

∠3+∠4=180°



注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;

⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角

⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。

⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。

2、垂线

⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

符号语言记作:

如图所示:AB⊥CD,垂足为O

⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)

⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。

3、垂线的画法:

⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。

注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。

画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。

4、点到直线的距离

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离

记得时候应该结合图形进行记忆。

如图,PO⊥AB,同P到直线AB的距离是PO的长。PO是垂线段。PO是点P到直线AB所有线段中最短的一条。

现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用。

5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念

分析它们的联系与区别

⑴垂线与垂线段 区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度。 联系:具有垂直于已知直线的共同特征。(垂直的性质)

⑵两点间距离与点到直线的距离 区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间。 联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离。

⑶线段与距离 距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同。

5.2平行线

1、平行线的概念:

在同一平面内,不相交的两条直线叫做平行线,直线与直线互相平行,记作‖。

2、两条直线的位置关系

在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。

因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)

判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:

①有且只有一个公共点,两直线相交;

②无公共点,则两直线平行;

③两个或两个以上公共点,则两直线重合(因为两点确定一条直线)

3、平行公理――平行线的存在性与惟一性

经过直线外一点,有且只有一条直线与这条直线平行

4、平行公理的推论:

如果两条直线都与第三条直线平行,那么这两条直线也互相平行

如左图所示,∵‖,‖

∴‖

注意符号语言书写,前提条件是两直线都平行于第三条直线,才会结论,这两条直线都平行。

5、三线八角

两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角。

如图,直线被直线所截

①∠1与∠5在截线的同侧,同在被截直线的上方,

叫做同位角(位置相同)

②∠5与∠3在截线的两旁(交错),在被截直线之间(内),叫做内错角(位置在内且交错)

③∠5与∠4在截线的同侧,在被截直线之间(内),叫做同旁内角。

④三线八角也可以成模型中看出。同位角是“A”型;内错角是“Z”型;同旁内角是“U”型。

6、如何判别三线八角

判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全。

例如:

如图,判断下列各对角的位置关系:⑴∠1与∠2;⑵∠1与∠7;⑶∠1与∠BAD;⑷∠2与∠6;⑸∠5与∠8。

我们将各对角从图形中抽出来(或者说略去与有关角无关的线),得到下列各图。

如图所示,不难看出∠1与∠2是同旁内角;∠1与∠7是同位角;∠1与∠BAD是同旁内角;∠2与∠6是内错角;∠5与∠8对顶角。

注意:图中∠2与∠9,它们是同位角吗?

不是,因为∠2与∠9的各边分别在四条不同直线上,不是两直线被第三条直线所截而成。

7、两直线平行的判定方法

方法一 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行

简称:同位角相等,两直线平行

方法二 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行

简称:内错角相等,两直线平行

方法三 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行

简称:同旁内角互补,两直线平行

几何符号语言:

∵ ∠3=∠2

∴ AB‖CD(同位角相等,两直线平行)

∵ ∠1=∠2

∴ AB‖CD(内错角相等,两直线平行)