⑴ 数学公式小学全部有哪些
小学必背公式:
1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 。
2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 。
3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度 。
4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价 。
5、工作效率×工作时间=工作总量。
6、加数+加数=和 和-一个加数=另一个加数 。
7、被减数-减数=差 被减数-差=减数 差+减数=被减数 。
8、因数×因数=积 积÷一个因数=另一个因数 。
9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数 。
小学数学图形计算公式 :
1、正方形 C周长 S面积 a边长 。
周长=边长×4 C=4a 。
面积=边长×边长 S=a×a 。
2、正方体 V:体积 a:棱长 。
表面积=棱长×棱长×6 S表=a×a×6 。
体积=棱长×棱长×棱长 V=a×a×a 。
3、长方形 C周长 S面积 a边长 。
周长=(长+宽)×2 C=2(a+b) 。
面积=长×宽 S=ab 。
4、长方体 V:体积 s:面积 a:长 b: 宽 h:高 。
表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) 。
体积=长×宽×高 V=abh 。
5、三角形 s面积 a底 h高 。
面积=底×高÷2 s=ah÷2 。
三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 。
6、平行四边形 s面积 a底 h高 。
面积=底×高 s=ah 。
7、梯形 s面积 a上底 b下底 h高 。
面积=(上底+下底)×高÷2 s=(a+b)× h÷2 。
8、圆形 S面积 C周长 ∏ d=直径 r=半径 。
周长=直径×∏=2×∏×半径 C=∏d=2∏r 。
面积=半径×半径×∏ 。
9、圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 。
侧面积=底面周长×高 表面积=侧面积+底面积×2 。
体积=底面积×高 体积=侧面积÷2×半径 。
10、圆锥体 v:体积 h:高 s;底面积 r:底面半径 。
体积=底面积×高÷3 。
⑵ 小学数学知识点有哪些
小学数学知识点如下:
1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推。
2、个位不够减从十位退1,在个位加10再减。
3、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数。
4、从被除数高位起,先用除数试除被除数前两位,如果它比除数小。
5、圆的面积=半径×半径×π 公式:S=πr2。
⑶ 小学数学必背公式大全你知道多少
小学数学知识概念公式汇总
小学一年级 九九乘法口诀表.学会基础加减乘.
小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形.
小学三年级 学会乘法交换律,几何面积周长等,时间量及单位.路程计算,分配律,分数小数.
小学四年级 线角自然数整数,素因数梯形对称,分数小数计算.
小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积.
小学六年级 比例百分比概率,圆扇圆柱及圆锥.
必背定义、定理公式
三角形的面积=底×高÷2. 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度.
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高.公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积.公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高.公式:V=Sh
圆锥的体积=1/3底面×积高.公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.
分数的乘法则:用分子的积做分子,用分母的积做分母.
分数的除法则:除以一个数等于乘以这个数的倒数.
读懂理解会应用以下定义定理性质公式
一、算术方面
1、加法交换律:两数相加交换加数的位置,和不变.
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变.
3、乘法交换律:两数相乘,交换因数的位置,积不变.
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变. O除以任何不是O的数都得O.
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾.
7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式.
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立.
8、什么叫方程式?答:含有未知数的等式叫方程式.
9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式.
学会一元一次方程式的例法及计算.即例出代有χ的算式并计算.
10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数.
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母.
15、分数除以整数(0除外),等于分数乘以这个整数的倒数.
16、真分数:分子比分母小的分数叫做真分数.
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于1.
18、带分数:把假分数写成整数和真分数的形式,叫做带分数.
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变.
20、一个数除以分数,等于这个数乘以分数的倒数.
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数.
数量关系计算公式方面
1、单价×数量=总价
2、单产量×数量=总产量
3、速度×时间=路程
4、工效×时间=工作总量
5、加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
有余数的除法: 被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变.例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米. 1亩=666.666平方米.
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什么叫比:两个数相除就叫做两个数的比.如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变.
8、什么叫比例:表示两个比相等的式子叫做比例.如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积.
10、解比例:求比例中的未知项,叫做解比例.如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系.如:y/x=k( k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系.如:x×y = k( k一定)或k / x = y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数.百分数也叫做百分率或百分比.
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号.其实,把小数化成百分数,只要把这个小数乘以100%就行了.
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.
14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数.其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了.
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数.
15、要学会把小数化成分数和把分数化成小数的化发.
16、最大公约数:几个数都能被同一个数一次性整除,这个数
⑷ 六年级数学必背公式是什么
小学六年级上册数学必背公式大全:
一、用字母表示运算定律或性质。
加法交换律:a+b=b+a。
加法结合律:(a+b)+c=a+(b+c)。
乘法交换律:ab=ba。
乘法结合律:(ab)c=a(bc)。
乘法分配律:a(b+c)=ab+ac。
二、几何图形计算公式。
(1)周长:即围绕物体一周的长度。
①长方形周长=(长+宽)×2,C=(a+b)×2。
②正方形周长=边长×4,C=4a。
③圆的周长=圆周率×直径=圆周率×半径×2,C=πd,C =2πr。
(2)面积:即物体的表面或封闭图形的大小。
①长方形的面积=长×宽,S=ab。
②正方形的面积=边长×边长,S=axa=a2。
③平行四边形的面积=底×高,S=ah。
④三角形的面积=底×高÷2,S=ah÷2。
⑤梯形的面积=(上底+下底)×高÷2,S=(a+b)h÷2。
⑥圆的面积=圆周率×半径,S=πr2。
⑦直径d=2r,径=直径÷2,r= d÷2。
⑧环形面积=外圆面积-内圆面积,S环=S外-S内。
【相互联系】 平面图形的面积公式是以长方形面积计算公式为基础的。如两个完全相同的三角形、梯形可拼成一个平行四边形。圆拼成长方形的长时1/2C,宽是R。
(3)表面积:立体图形的所有面的面积之和叫做它的表面积。
①长方体的表面积=(长×宽+长×高+宽×高)×2,S=2(ab+ah+bh)。
②正方体的表面积=棱长×棱长×6,S=a×a×6=6a2。
③圆柱体的侧面积=底面周长×高,S=Ch=2πrh。
④圆柱体的表面积=侧面积+底面积×2,S=Ch+2πr2= 2πrh+2πr2。
注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h2πr。
(4)体积:物体所占空间的大小叫体积。
①长方体的体积=长×宽×高,V=abh。
②正方体的体积=棱长×棱长×棱长,V=a×a×a=a3。
③圆柱的体积=底面积×高,V=sh=πr2h。
④圆锥的体积=底面积×高÷3,V=1/3sh= 1/3πr2h。
【相互联系】长方体、正方体和圆柱体的体积公式可统一成:V=sh,即底面积×高。等体积等底的长、正、圆柱体和圆锥体,圆锥高是长方体、正方体、圆柱体高的3倍。
三、数量关系式:
1、每份数×份数=总数。
总数÷每份数=份数。
总数÷份数=每份数。
2 、单价×数量=总价 。
总价÷单价=数量 。
总价÷数量=单价。
3、速度×时间=路程 。
路程÷速度=时间 。
路程÷时间=速度。
4、工效×工时=工作总量 。
工作总量÷工效=工时 。
工作总量÷工时=工效 。
5、 加数+加数=和 。
和-一个加数=另一个加数。
6、 被减数-减数=差 。
被减数-差=减数 。
差+减数=被减数。
7、 因数×因数=积 。
积÷一个因数=另一个因数。
8、 被除数÷除数=商 。
被除数÷商=除数 。
商×除数=被除数 。
被除数=除数×商+余数。
注意:0.3÷0.2=1...0.1,除数与被除数同时扩大100倍,商不变,余数也扩大100倍。
9、 平均数=总数÷总份数 。
平均速度=总路程÷总时间。
10、相遇路程=速度和×相遇时间 。
相遇时间=相遇路程÷速度和 。
速度和=相遇路程÷相遇时间 。
一个人的速度=相遇路程÷相遇时间-另一个人的速度。
11、平均速度=总路程÷(顺流时间+逆流时间)。
注意:折(往)返=路程×2。
12、溶质(药)+溶剂(水)=溶液(药水),溶质(药)÷溶液(药水)=浓度,溶液(药水)×浓度=溶质(药),溶质(药)÷浓度=溶液(药水)。
13、折扣=现价÷原价 (折扣<1) 。
现价=原价×折扣。
原价=现价÷折扣 。
14、利息=本金×年利率×时间(年)=本金×月利率×时间(月)。
税后利息=本金×利率×时间×(1-5%)。
15、比例尺=图上距离÷实际距离。
实际距离=图上距离÷比例尺 。
图上距离=实际距离×比例尺 。
16、追及距离=速度差×追及时间 。
追及时间=追及距离÷速度差 。
速度差=追及距离÷追及时间。
小学六年级下册数学必背公式大全:
负数必背知识点:
1、0既不是正数,也不是负数,它是正数和负数的分界。0大于所有负数,小于所有正数。负数比较大小,不考虑负号,数字大的数反而小。
2、“+”可以省略不写,“-”不能省略。
3、数轴的要素:正方向(箭头表示)、原点(0刻度)、单位长度(刻度)。 0左边的数都是负数,0右边的数都是正数
百分数(二)知识点:
1、折扣:商品按原定价格的百分之几出售,叫做折扣。通称“打折”。几折就表示十分之几,也就是百分之几十。例如八折就表示十分之八,就是按原价的80﹪出售。
2、成数:“几成”就是十分之几,也就是百分之几十。三成五就是十分之三点五,也就是35%
3、应纳税额 = 总收入×税率 税率=应纳税额÷总收入 总收入=应纳税额÷税率
4、利息=本金×利率×存期
5、满100元减50元,就是在总价中取整百元部分,每个100元减去50元,不满100元的零头部分不优惠。
圆、圆柱、圆柱必背公式:
1、在同圆或等圆内,直径的长度是半径的2倍,公式d=2r;半径的长度是直径的一半,公式r=d÷2。
2、已知直径求周长:圆的周长=圆周率×直径,公式C=πd,直径=周长÷圆周率,公式d=C÷π。
3、已知半径求周长:圆的周长=2×圆周率×半径,公式C=2πr,半径=周长÷圆周率的2倍,公式r=C÷2π。
4、已知半径求面积:圆的面积=圆周率×半径的平方,公式S圆=πr2。
5、已知直径求面积:圆的面积=圆周率×(直径÷2)的平方,公式S圆 =π(d÷2)2。
6、圆柱的侧面积=底面的周长×高,公式S侧=Ch;圆柱的底面周长=侧面积÷高,公式C=s侧÷h;圆柱的高=侧面积÷底面周长,公式h=S侧÷C。
7、圆柱的表面积=侧面积+2×底面积,公式 S表= S侧+2S底。
8、圆柱的体积等于底面积乘以高,公式 V圆柱=Sh。圆柱的高等于体积除以底面积,公式h=v÷s;圆柱的底面积等于体积除以高,公式s=v÷h。
9、一个圆锥的体积等于与它等底等高的圆柱体积的三分之一 。圆锥体积公式:V=1 /3Sh。圆锥的高等于体积的3倍除以底面积,公式h=3v÷s;圆锥的底面积等于体积的3倍除以高,公式s=3v÷h。
10、环形的面积=大圆面积-小圆面积,S环 =πR -πr。
11、体积和高相等的圆锥与圆柱之间,圆锥的底面积是圆柱的三倍。即圆锥的底面积=圆柱底面积×3,圆柱底面积=圆锥底面积÷3。
12、体积和底面积相等的圆锥与圆柱之间,圆锥的高是圆柱的三倍。即圆锥的高=圆柱的高×3,圆柱的高=圆锥的高÷3。
比例必背知识点:
1、表示两个比相等的式子叫做比例。如2:1=6:3。
2、在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6。
3、解比例 :根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。例如3:x = 4:8,内项乘内项,外项乘外项,则:4x =3×8,解得x=6。
4、成正比例的量: 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示y/x=k(一定) 例如:速度一定,路程和时间成正比例,因为:路程÷时间=速度(一定)。
5、成反比例的量 :两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。 用字母表示x×y=k(一定) 例如:路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。
6、图上距离:实际距离=比例尺;实际距离=图上距离÷比例尺;图上距离=实际距离×比例尺;
数学广角---鸽巢问题:
1、物体数÷抽屉数=商……余数 至少数=商+1。
2、只要摸出的球数比它们的颜色种数多1,就能保证有两个球同色。
⑸ 小学全部数学公式有哪些
小学全部数学公式:
一、关系表达式
1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度
3、被除数÷除数=商被除数÷商=除数商×除数=被除数
4、单价×数量=总价总价÷单价=数量总价÷数量=单价
5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、加数+加数=和和-一个加数=另一个加数
7、被减数-减数=差被减数-差=减数差+减数=被减数
8、因数×因数=积积÷一个因数=另一个因数
二、单位间进率
1、1公里=1千米1千米=1000米
2、1米=10分米1分米=10厘米1厘米=10毫米
3、1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米
4、1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米
5、1吨=1000千克1千克=1000克=1公斤=1市斤
6、1公顷=10000平方米1亩=666.666平方米
7、1升=1立方分米=1000毫升1毫升=1立方厘米
三、几何形体周长面积体积计算公式
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽S=ab
4、正方形的面积=边长×边长S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径
11、长方体的表面积=(长×宽+长×高+宽×高)×2公式:S=(a×b+a×c+b×c)×2
12、长方体的体积=长×宽×高公式:V = abh
⑹ 1到6年级数学公式与重点知识
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%) (有问题可以问我,QQ792108238
⑺ 小学三年级数学必背公式有哪些
小学三年级数学必背公式有长方形的周长=(长+宽)×2C=(a+b)×2,正方形的周长×4C=4a,长方形的面积=长×宽S=ab,正方形的面积=边长×边长S=a.a=a,三角形的面积=底×高÷2S=ah÷2。
平行四边形的面积=底×高S=ah,梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2,直径=半径×2d=2r半径=直径÷2r=d÷2,圆的周长=圆周率×直径=圆周率×半径×2c=πd=2πr,圆的面积=圆周率×半径×半径。
怎么学好数学
我们知道痛苦指数和理解指数成反比,越多的理解意味着越少的痛苦。之所以数学让很多学生头疼,是因为我们在数学学习和教学过程中,缺乏真正意义上的理解。我们的数学教材的表述框架多年来基本没变,所以今天学生的学习痛点和30年前的学生的学习痛点也很相似。
也就是说,我们很难在现行数学教材上解决数学学习的痛点,达成真正意义上的理解。这也是这本书的使命之一,就是突破现行数学教材的表述框架,解决学生的理解痛点。后面的十章内容(基本涵盖了高中数学的主要知识点)就是在做这样的尝试。