Ⅰ 简述幼儿活动中数学教育活动的特点
1、幼儿数学教学活动具有情境性、操作性和游戏性的特点。  在进行数学教学活动之前,教师首先需要依据教育目标,幼儿的发展状况及幼儿的兴趣、需要,制定本次教学活动的具体目标,选择相应的教学内容、教学方法和活动的组织形式。也就是说,在进行教学活动之前,教师要考虑并制定好完整的教学计划。这种教学计划带有预成性的特点。  在教学计划实施过程中,教师有可能会根据教学的实际情况,调整或更改教学计划中的某一环节,但就整个计划来说,一般是不会作大的变动的。  2、幼儿数学教学活动是有目的、有计划、有组织的活动  幼儿的学习是一个主动的建构过程,他们的兴趣和需要是其学习的内在动力。幼儿在学习过程中中能做的只是与他兴趣相符的事情。数学教学活动的计划是教师依据教育目标事先预设和规定的,在计划的制定过程中,往往会对幼儿的兴趣、需要有所忽略或注意不够。如何解决这一问题?这就需要教师要能将预定的教育目标和内容转化为幼儿自己的需求,以激发起幼儿学习的兴趣和求知欲,使他们主动参与活动,积极进行学习,在自主建构数学知识的过程中,身心获得更好的发展。幼儿数学教学活动具有的情境性、操作性和游戏化的特点,能较好地将教育目标和内容转化为幼儿自己的需求,它是解决这一问题的重要策略 
Ⅱ 学前儿童学习数学的心理特点有哪些 儿童的数学学习过程
学前儿童学习数学的心理特点:
学前儿童的数学学习对动作的依赖性很强,年龄越小,依赖性越强,如计数活动、数的组成、加减法、分类、排序、测量等,学前儿童都是通过进行实物操作活动来感知与理解的。学前儿童需要对操作材料进行摆弄、观察、比较,获得直接的感性经验。如判断一个数字是单数还是双数,教师为学前儿童提供相应数量的玩具,让学前儿童两两找朋友,如果每个物体都能找到朋友,就说明是双数,如果最后剩一个物体没有朋友,那么就是单数,反复操作和总结后,学前儿童就可以知道1,3,5,7,9,是单数,2,4,6,8,10是双数。可见,学前儿童能够做到初步认识单双数,为以后理解能够被2整除的数就是双数,不能被2整除的数就是单数,从而真正理解单双数的含义做准备。
儿童的数学学习过程:
表象是由直接感知到抽象思维的中间环节。表象是指过去感知过的事物在头脑中留下的印象,数学表象具有思维性、概括性、创造性和运动性等特征,它高于具体水平,又低于抽象水平,不能像抽象概念那样反映事物的本质属性,是儿童对客观世界的直接感知过渡到抽象思维的一个中间环节,表象的作用在于促使感性经验内化为抽象的数学概念。为帮助学前儿童在头脑中建立正确丰富的表象,必须根据学前儿童的认知规律,为学前儿童创设适宜的实物数学情境,通过模型、图片、操作等途径,学前儿童多角度、多感官、多形式地进行感知,获得感性经验,丰富表象的积累。例如,在学习加减法的过程中,首先要借助于实物、图片等直观材料,让学前儿童实现具体水平上的加减运算,然后借助于无直观材料伴随的口述应用题唤起学前儿童头脑中的表象,发展学前儿童表象水平上的加减运算能力,从而为学前儿童加减运算能力发展到抽象水平的加减做好必要的准备。最后,在具体经验和表象建立的基础上形成抽象的数学概念。
Ⅲ 简述幼儿数学学科的本质与特点
1.数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。”自古以来,多数人把数学看成是一种知识体系,是经过严密的逻辑推理而形成的系统化的理论知识总和,它既反映了人们对“现实世界的空间形式和数量关系”的认识,又反映了人们对“可能的量的关系和形式”的认识。数学既可以来自现实世界的直接抽象,也可以来自人类思维的能动创造。
2.从人类社会的发展史看,人们对数学本质特征的认识在不断变化和深化。“数学的根源在于普通的常识,最显着的例子是非负整数。"欧几里德的算术来源于普通常识中的非负整数,而且直到19世纪中叶,对于数的科学探索还停留在普通的常识,”另一个例子是几何中的相似性,“在个体发展中几何学甚至先于算术”,其“最早的征兆之一是相似性的知识,”相似性知识被发现得如此之早,“就象是大生的。”因此,19世纪以前,人们普遍认为数学是一门自然科学、经验科学,因为那时的数学与现实之间的联系非常密切,随着数学研究的不断深入,从19世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位,这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学都建立在代数结构、序结构和拓扑结构这三种母结构之上。与这种观点相对应,从古希腊的柏拉图开始,许多人认为数学是研究模式的学问,数学家怀特海(A. N. Whiiehead,186----1947)在《数学与善》中说,“数学的本质特征就是:在从模式化的个体作抽象的过程中对模式进行研究,”数学对于理解模式和分析模式之间的关系,是最强有力的技术。”1931年,歌德尔(K,G0de1,1978)不完全性定理的证明,宣告了公理化逻辑演绎系统中存在的缺憾,这样,人们又想到了数学是经验科学的观点,着名数学家冯·诺伊曼就认为,数学兼有演绎科学和经验科学两种特性。
3.对于上述关于数学本质特征的看法,我们应当以历史的眼光来分析,实际上,对数本质特征的认识是随数学的发展而发展的。由于数学源于分配物品、计算时间、丈量土地和容积等实践,因而这时的数学对象(作为抽象思维的产物)与客观实在是非常接近的,人们能够很容易地找到数学概念的现实原型,这样,人们自然地认为数学是一种经验科学;随着数学研究的深入,非欧几何、抽象代数和集合论等的产生,特别是现代数学向抽象、多元、高维发展,人们的注意力集中在这些抽象对象上,数学与现实之间的距离越来越远,而且数学证明(作为一种演绎推理)在数学研究中占据了重要地位,因此,出现了认为数学是人类思维的自由创造物,是研究量的关系的科学,是研究抽象结构的理论,是关于模式的学问,等等观点。这些认识,既反映了人们对数学理解的深化,也是人们从不同侧面对数学进行认识的结果。正如有人所说的,“恩格斯的关于数学是研究现实世界的数量关系和空间形式的提法与布尔巴基的结构观点是不矛盾的,前者反映了数学的来源,后者反映了现代数学的水平,现代数学是一座由一系列抽象结构建成的大厦。”而关于数学是研究模式的学问的说法,则是从数学的抽象过程和抽象水平的角度对数学本质特征的阐释,另外,从思想根源上来看,人们之所以把数学看成是演绎科学、研究结构的科学,是基于人类对数学推理的必然性、准确性的那种与生俱来的信念,是对人类自身理性的能力、根源和力量的信心的集中体现,因此人们认为,发展数学理论的这套方法,即从不证自明的公理出发进行演绎推理,是绝对可靠的,也即如果公理是真的,那么由它演绎出来的结论也一定是真的,通过应用这些看起来清晰、正确、完美的逻辑,数学家们得出的结论显然是毋庸置疑的、无可辩驳的。
4.事实上,上述对数学本质特征的认识是从数学的来源、存在方式、抽象水平等方面进行的,并且主要是从数学研究的结果来看数学的本质特征的。显然,结果(作为一种理论的演绎体系)并不能反映数学的全貌,组成数学整体的另一个非常重要的方面是数学研究的过程,而且从总体上来说,数学是一个动态的过程,是一个“思维的实验过程”,是数学真理的抽象概括过程。逻辑演绎体系则是这个过程的一种自然结果。在数学研究的过程中,数学对象的丰富、生动且富于变化的一面才得以充分展示。波利亚(G. Poliva,1888一1985)认为,“数学有两个侧面,它是欧几里德式的严谨科学,但也是别的什么东西。由欧几里德方法提出来的数学看来象是一门系统的演绎科学,但在创造过程中的数学看来却像是一门实验性的归纳科学。”弗赖登塔尔说,“数学是一种相当特殊的活动,这种观点“是区别于数学作为印在书上和铭,记在脑子里的东西。”他认为,数学家或者数学教科书喜欢把数学表示成“一种组织得很好的状态,”也即“数学的形式”是数学家将数学(活动)内容经过自己的组织(活动)而形成的;但对大多数人来说,他们是把数学当成一种工具,他们不能没有数学是因为他们需要应用数学,这就是,对于大众来说,是要通过数学的形式来学习数学的内容,从而学会相应的(应用数学的)活动。这大概就是弗赖登塔尔所说的“数学是在内容和形式的互相影响之中的一种发现和组织的活动”的含义。菲茨拜因(Efraim Fischbein)说,“数学家的理想是要获得严谨的、条理清楚的、具有逻辑结构的知识实体,这一事实并不排除必须将数学看成是个创造性过程:数学本质上是人类活动,数学是由人类发明的,”数学活动由形式的、算法的与直觉的等三个基本成分之间的相互作用构成。库朗和罗宾逊(Courani Robbins)也说,“数学是人类意志的表达,反映积极的意愿、深思熟虑的推理,以及精美而完善的愿望,它的基本要素是逻辑与直觉、分析与构造、一般性与个别性。虽然不同的传统可能强调不同的侧面,但只有这些对立势力的相互作用,以及为它们的综合所作的奋斗,才构成数学科学的生命、效用与高度的价值。”
Ⅳ 数学简答题幼儿园数学教育活动有哪些特点
1、幼儿数学教学活动具有情境性、操作性和游戏性的特点。 在进行数学教学活动之前,教师首先需要依据教育目标,幼儿的发展状况及幼儿的兴趣、需要,制定本次教学活动的具体目标,选择相应的教学内容、教学方法和活动的组织形式。也就是说,在进行教学活动之前,教师要考虑并制定好完整的教学计划。这种教学计划带有预成性的特点。 在教学计划实施过程中,教师有可能会根据教学的实际情况,调整或更改教学计划中的某一环节,但就整个计划来说,一般是不会作大的变动的。 2、幼儿数学教学活动是有目的、有计划、有组织的活动 幼儿的学习是一个主动的建构过程,他们的兴趣和需要是其学习的内在动力。幼儿在学习过程中中能做的只是与他兴趣相符的事情。数学教学活动的计划是教师依据教育目标事先预设和规定的,在计划的制定过程中,往往会对幼儿的兴趣、需要有所忽略或注意不够。如何解决这一问题?这就需要教师要能将预定的教育目标和内容转化为幼儿自己的需求,以激发起幼儿学习的兴趣和求知欲,使他们主动参与活动,积极进行学习,在自主建构数学知识的过程中,身心获得更好的发展。幼儿数学教学活动具有的情境性、操作性和游戏化的特点,能较好地将教育目标和内容转化为幼儿自己的需求,它是解决这一问题的重要策略
Ⅳ 数学知识的特点什么和什么,幼儿学习数学的特点是什么
数学知识的特点就是代数和几何,幼儿学习数学的特点就是珠算(打算盘)心脑算(我后悔没学啊。。。)
Ⅵ 幼儿学习数学的特点有哪些
幼儿数学学习特点是通过实物理解抽象的数字,以及数学含义。首先要启发幼儿对数学的兴趣,给幼儿建立数学认知,把数学生活化、游戏化、儿童化,最重要的是趣味性,培养幼儿思维培养。
▋有意识的进行数学教育
通过日常生活的一些小事情,使孩子不知不觉中接触到数字“1”的概念。例如在给孩子喂饭的时候,可以说“宝宝乖,先吃一口,再吃一口”,这样子对孩子日后数字教育会有很好的启发作用。
▋和孩子做游戏互动
游戏是孩子最喜欢最能接受的学习方式,也是最有利于亲子关系的方式。例如,和孩子爬行比赛,或者比赛捡东西的游戏等。通过游戏,不仅可以锻炼孩子的动手和运动能力,而且可以培养孩子的注意力、观察力、耐力和竞争意识,对孩子以后的成长发展非常有好处。
▋教孩子做比较
数学启蒙除了数数,还涉及到图形几何、时间空间、逻辑推理、比较分类等。家长们借助生活中的事物,教孩子大小比较、形状配对知识。例如吃饭时让孩子比一比谁的碗更大,装的东西多,甚至可以引导孩子动手操作一下,怎么才能装满它。
▋教孩子数数之前要懂的
很多父母一提到数学启蒙,就想到教孩子数数,其实数数随时都可以进行,并不单纯让孩子背数字,而是让孩子理解数字。在教孩子数数前,家长应该多引导孩子观察生活中的事物,了解到大小快慢、轻重高矮等的不同,然后才引导孩子去认识数字1234,理解数字。
启发孩子对数学的兴趣,不仅是数数和加减,要更多地联系实际,让孩子去发现生活中数与形的关系,并引导孩子理解和运用抽象数字后的实际意义,将数学与他的日常联系起来,这是父母给孩子做数学启蒙需要思考的,也是最恰当的方式。
Ⅶ 心理学上简述幼儿数学的特点是什么
幼儿教育心理学 1、自由性 2、趣味性 3、虚构性 4、社会性 5、实践性 幼儿教育心理学是在幼儿教育学和幼儿心理学基础上形成的一门学科。它主要研究幼儿学习的规律与特征以及教师有效开展教育教学活动,促进幼儿学习与身心的健康发展。 幼儿心理学是研究幼儿(3- 6、7岁入学前儿童)心理现象发生、发展和活动规律的一门科学。 幼儿心理学和婴儿心理学、学龄儿童心理学、少年心理学、老年心理学等都是发展心理学的分支学科,和幼儿卫生保育教程、幼儿教育学、幼儿园教育活动的设计与指导等教育理论课都是学前教育专业的必修课。 阅读《幼儿教育心理学》时,人类已经迈入了21世纪。这是一个变幻莫测的世纪,这是一个催人奋进的时代。科学技术飞速发展,知识更替日新月异。希望、困惑、机遇、挑战,随时随地都可能出现在每一个社会成员的生活之中。抓住机遇,寻求发展,迎接挑战,适应变化的制胜法宝就是学习——依靠自己学习、终生学习。
Ⅷ 中班幼儿数学学习的思维特点及对教育的启示
正确答案: 案例中的内容体现了学前儿童思维从具体到抽象的特点。学前儿童的思维主要是以形象思维为主,对物体的认识往往需要借助具体直观的材料,但数学知识却是一种高度抽象的知识,需要摆脱具体事物的其他无关特征才能获得。这与儿童对数学知识的理解恰恰需要借助于具体的事物,并且容易受到具体事物的影响的特点正是一对矛盾。这种矛盾在小年龄儿童身上体现得更突出。幼儿还不能从事物的具体特征中摆脱出来,从而抽象出数量特征,这种由事物的具体特征而带来的干扰,将随着他们对数学知识的抽象性质的理解而逐渐减少。 启示:幼儿学习数学必须借助于具体事物的影响,因此教师应该为幼儿提供多种学具、玩具,引发幼儿积极、主动地进行探索,注意采用多种教学方法,鼓励幼儿动手操作,及时对幼儿进行点拨。
答案解析:在线模考后查看
Ⅸ 论述幼儿数学学习的特点及教育原则
幼儿数学教育的原则是指在对幼儿开展数学教育时应遵循的一些基本准则。毫无疑问,对幼儿进行数学教育,首先要考虑的就是幼儿学习数学的心理特点。以下的教育原则,就是在幼儿学习数学的心理特点基础上,结合数学知识本身所具有的特点所提出的。
一、密切联系生活的原则
现实生活是幼儿数学概念的源泉。幼儿的数学知识和他们的现实生活有着密切的联系。可以说幼儿的生活中到处都有数学。幼儿每天接触的各种事物都会和数、量、形有关。比如,他们说到自己几岁了,就要涉及数;和别的幼儿比身高,实际上就是量的比较;在搭积木时,就会看到不同的形状。幼儿在生活中还会遇到各种各样的问题需要运用数学来加以解决。比如,幼儿要知道家里有几个人,就需进行计数,在拿取东西时,幼儿总希望拿“多多”、拿“大的”,这就需要判别多和少、大和小等数量关系。总之,生活中的很多问题,都可以归结为一个数学问题来解决,都可以变成幼儿学习数学的机会。
另方面,从数学知识本身的特点看,很多抽象的数学概念,如果不借助于具体的事物,儿童就很难理解。现实生活为儿童提供了通向抽象数学知识的桥梁。举例来说,有些儿童不能理解加减运算的抽象意义,而实际上他们可能在生活中经常会用加减运算解决问题,只不过没有把这种“生活中的数学”和“学校里的数学”联系起来。如果教师不是“从概念到概念”地教儿童,而是联系儿童的实际生活,借助儿童已有的生活经验,就完全能够使这些抽象的数学概念建立在儿童熟悉的生活经验基础上。如让儿童在游戏角中做商店买卖的游戏,甚至请家长带儿童到商店去购物,给儿童自己计算钱物的机会,可以使儿童认识到抽象的加减运算在现实生活中的运用,同时也帮助儿童理解这些抽象的数学概念。
数学教育要密切联系生活的原则,具体地应表现在:
数学教育内容应和幼儿的生活相联系,要从幼儿的生活中选择教育内容。我们给幼儿的学习内容,不应是抽象的数学知识,而应紧密联系他们的生活实际。例如,在教数的组成的知识时,可以引入幼儿日常生活中分东西的事情,让幼儿分各种东西,这样他们就会感到比较熟悉,也比较容易接受数的组成的概念。
在生活中引导幼儿学数学。数学教育除了要通过有计划、有组织的集体教学外,更要结合幼儿的日常生活,在幼儿的生活中进行教育。例如,在分点心时,就可引导幼儿注意,有多少点心,有多少小朋友,可以怎样分,等等。
此外,数学教育联系幼儿的生活,还要引导幼儿用数学,让幼儿感受到数学作为一种工具在实际生活中的应用和作用。例如,幼儿园中饲养小动物,可以引导幼儿去测量小动物的生长。在游戏活动中,也可创设情境,让幼儿用数学,例如在商店游戏中让幼儿学习买东西,计算商品的价格等等。这些实际上正是一种隐含的数学学习活动。幼儿常常在不自觉之中,就积累了丰富的数学经验。而这些经验又为他们学习数学知识提供了广泛的基础。
二、发展幼儿思维结构的原则
“发展幼儿思维结构”的原则,是指数学教育不应只是着眼于具体的数学知识和技能的教学,而应指向幼儿的思维结构的发展。
按照皮亚杰的理论,幼儿的思维是一个整体的结构,幼儿思维的发展就表现为思维结构的发展。思维结构具有一般性和普遍性,它是幼儿学习任何具体知识的前提。例如,当学前儿童的思维结构中还没有形成抽象的序列观念时,他们就不可能用逻辑的方法给不同长短的木棍排序。反过来,幼儿对数学概念的学习过程,也有助于其一般的思维结构的发展。这是因为数学知识具有高度的逻辑性和抽象性,学习数学可以锻炼幼儿思维的逻辑性和抽象性。总之,幼儿建构数学概念的过程,和其思维结构的建构过程之间具有相当的一致性。
在幼儿数学教育中,幼儿掌握某些具体的数学知识只是一种表面的现象,发展的实质在于幼儿的思维结构是否发生了改变。以长短排序为例,有的教师把排序的“正确”方法教给幼儿:每次找出最长的一根,排在最前面,然后再从剩下的木棍中找出最长的……幼儿按照教师教给的方法,似乎都能正确地完成排序任务,但实际上,他们并没有获得序列的逻辑观念,其思维结构并没有得到发展。而幼儿真正需要的并不是教给他们排序的技能,而是充分的操作和尝试,并从中得到领悟的机会。只有这样,他们才能从中获得一种逻辑经验,并逐渐建立起一种序列的逻辑观念。而一旦具备了必要的逻辑观念,幼儿掌握相应的数学知识就不再是什么困难的事情了。
总之,数学知识的获得和思维结构的建构应该是同步的。在幼儿数学教育中,教师在教给幼儿数学知识的同时,还要考虑其思维结构的发展。而只有当幼儿的思维结构同时得到发展,他们得到的数学知识才是最牢固的、不会遗忘的知识。正如一位儿童对皮亚杰所说的:“一旦你知道了,你就永远知道了。”(当皮亚杰问一位达到守恒认识的儿童“你是怎么知道的?”时,儿童说出了上面的话,皮亚杰认为这是一个绝妙的回答。
)
在教育实践中,教师常常需要在传授数学知识和发展思维结构之间作出一定的选择。二者之间实际上是具体利益和普遍利益的关系、眼前利益和长远利益的关系。有时,教师对某些具体的知识技能弃而不教,是为了给幼儿更多的机会进行自我调节和同化的作用,以期从根本上改变幼儿的思维方式,因而并不违背数学教育的宗旨。
三、让幼儿操作、探索的原则
让幼儿操作、探索的原则,就是要让幼儿通过自己的活动建构数学知识。数学知识是幼儿自己建构起来的,而且这个建构过程也是幼儿认知结构建构的过程。如果教师只注重结果的获得,而“教”给幼儿很多,实际上就剥夺了他们自己获得发展的机会。事实上,幼儿的认知结构也并不可能通过单方面的“教”获得发展,而必须依赖他自己和环境之间的相互作用,在主客体的相互作用中获得发展。
在数学教育中,主客体的相互作用具体地表现为幼儿操作物质材料、探索事物之间关系的活动。让幼儿操作、摆弄具体实物,并促使其将具体的动作内化于头脑,是发展幼儿思维的根本途径。在动作基础上建构起来的数学知识,是真正符合幼儿年龄特点的、和他的认知结构相适应的知识,也是最可靠的知识。而通过记忆或训练达到的熟练,则并不具有发展思维的价值。
让幼儿操作、探索的原则,要求教师在实践中要以操作活动为主要的教学方法,而不是让幼儿观看教师的演示或直观的图画,或者听教师的讲解。因为操作活动能够给予幼儿在具体动作水平上协调和理解事物之间关系的机会,是适合幼儿特点的学习方法。以小班幼儿认识数量为例。教幼儿口头数数能够让他们了解数的顺序,却不能让他们理解数量关系。很多小班幼儿数数能数到很多,但是这并不代表他们对数的顺序、数序中的数量关系就已经真正理解了。而通过操作活动,幼儿不仅在数数,还能协调口头数数和点数的动作,从而能理解数的实际意义。
操作活动还为幼儿内化数学概念,理解数的抽象意义提供了基础。在熟练操作的基础上,幼儿就能将其外在的动作浓缩、内化,变成内在的动作,最终转变成为头脑中的思考。例如,幼儿数概念的发展到了一定程度,就能做到目测数群而无需点数的动作了,最终幼儿看到某个数字就能理解其所代表的数量,而实际上这些能力都建立在最初的操作活动基础上。因此,操作活动对于幼儿学习数学是非常重要的。
此外,这一原则还要求教师把学数学变成幼儿自己主动探索的过程,让幼儿自己探索、发现数学关系,自己获取数学经验。教师“教”的作用,其实并不在于给幼儿一个知识上的结果,而在于为他们提供学习的环境:和材料相互作用的环境、和人相互作用的环境。当然,教师自己也是环境的一部分,也可以和幼儿交往,但必须是在幼儿的水平上和他们进行平等的相互作用。也只有在这样的相互作用中,幼儿才能获得主动的发展。
四、重视个别差异的原则
提出“重视个别差异的原则”的依据是幼儿发展的个别差异性。应该承认,每个幼儿都具有其与生俱来的独特性。这既表现在每个人有其独特的发展步骤、节奏和特点,还表现在每个人的脾气性情和态度倾向性各不相同。
在数学教育中,幼儿的个别差异表现得尤其明显。这不仅因为数学学习是一种“高强度”的智力活动,能够充分反映出幼儿思维发展水平的差异,可能也和数学本身的特点有关系——数学是一个有严格限定的领域,有一套特定的符号系统和游戏规则,它不像文学等领域那样需要复杂的生活经历,因而这方面的天赋也易于表现出来。(当代研究天才儿童的心理学专家加德纳也提出,数学和棋艺、音乐演奏是三个最容易产生少年天才的领域。 )
幼儿学习数学时的个别差异,不仅表现为思维发展水平上的差异,发展速度上的差异,还有学习风格上的差异。即使同样是学习有困难的幼儿,他们的困难也不尽相同。有的幼儿是缺乏概括抽象的能力,有的是缺乏学习经验。
作为教育者,应该考虑不同幼儿的个别差异,让每个幼儿在自己的水平上得到发展,而不是千篇一律,统一要求。例如,在为幼儿提供操作活动时,可以设计不同层次、不同难度的活动,这样幼儿可以自由选择适合自己水平和能力的活动。
对于学习有困难的幼儿,教师也应分析他们的具体情况,针对不同的困难,给予不同的指导。如对于缺乏概括抽象能力的幼儿,教师可引导其总结概括,并适当加以点拨和启发。而对于经验不足、缺乏概括材料的幼儿,则可单独提供一些操作练习的机会,补充其学习经验。