当前位置:首页 » 基础知识 » 有关数学文化的小知识
扩展阅读
怎么形容高二的同学 2025-01-12 01:37:43
小黄鸭儿童唇膏怎么样 2025-01-12 01:37:31

有关数学文化的小知识

发布时间: 2022-03-14 11:28:03

⑴ 数学文化知识的内容有哪些

数学文化知识的内容有:

1、数学发展史与人类发展史表明,数学一直是人类文明中主要的文化力量,它与人类文化休戚相关,在不同时代、不同文化中,这种力量的大小有所不同。

2、数学文化是传播人类思想的一种基本形式;数学文化包含着人类所创造语言的特殊形式;数学文化是自然与人类社会相互联系的一种工具;数学文化具有相对的稳定性和连续性;数学文化具有高度的渗透性。

3、数学语言是精确的,是从不含糊的,是有条理的,严谨,简洁,规范。

4、数学史上的三次危机,都是与悖论有关的,它们对数学及哲学都造成了巨大的影响。但数学危机不仅没有击垮数学,反而促使了数学的发展,具有丰富的思想文化意义,促使人们对数学认识的不断深化。

5、数学还从思维和技术等多角度为人类文化提供了方法论基础和技术手段,从而丰富和推动了文化的发展,数学是信息时代科学文化发展的基础。

⑵ 数学课外小知识

小朋友乖~~哥哥给你讲个关于数学的故事哦~~留心听啦~
在很久很久以前..........印度有个叫塞萨的人,精心设计了一种游戏献给国王,就是现在的64格国际象棋。国王对这种游戏非常满意,决定赏赐塞萨。国王问塞萨需要什么,塞萨指着象棋盘上的小格子说:“就按照棋盘上的格子数,在第一个小格内赏我1粒麦子,在第二个小格内赏我2粒麦子,第三个小格内赏4粒,照此下去,每一个小格内的麦子都比前一个小格内的麦子加一倍。陛下,把这样摆满棋盘所有64格的麦粒,都赏给我吧。”国王听后不加思索就满口答应了塞萨的要求。但是经过大臣们计算发现,就是把全国一年收获的小麦都给塞萨,也远远不够。
小朋友,听到这里是不是觉得很神奇呢?哈哈,哥哥高水平你个中的奥秘!
赛萨的话没有错,他的要求的确是满足不了的。根据计算,棋盘上六十四个格子小麦的总数将是一个十九位数,折算为重量,大约是两千多亿吨。国王拥有至高无尚的权力,却用其无知诠释着知识的深奥。

⑶ 小学数学文化知识的内容有哪些

需要掌握笔算两位数的加减法、混合运算、四位数的读写法、乘法除法的基本运算和分数的简单运算。

⑷ 数学文化包括哪些方面

什么是数学?曾经有一种非常普遍的说法,即“数学是锻炼思维的体操”,学数学就是为了培养逻辑思维能力.对于数学,绝大多数人的印象是严格、抽象,或者还有单调、枯燥,就象数学家G·波利亚所担忧的:“数学在各门课程中是最不得人心的一门功课,其名声不佳……”.那么,数学真的不过是一种“思维体操”,仅此而已?随着新世纪的到来,随着人们对数学更深层次的认识,数学的文化现象已明显的凸现了出来.“数学是一种文化”,已成为定论,而作为文化是可以被继承和发展的.细细想来,事实确是如此,世界上的语言、文字、宗教、党派都有地域之分,但世上只有一种数学,数学定理又能万世流传,数学确实是最具有文化特征的了.
数学确实是一种文化.
王梓坤先生在《今日数学与应用》一文中总结了数学在四个方面的巨大作用,其中一条就是“对全体人民的科学思维与文化素质的哺育”.他进一步指出:“数学文化具有比数学知识体系更为丰富和深邃的文化内涵,数学文化是对数学知识、技能、能力和素质等概念的高度概括.”我们学习数学不仅是为了获取知识,更能通过数学学习接受数学精神、数学思想和数学方法的熏陶,提高思维能力,锻炼思维品质.前苏联数学家辛钦也指出:数学教育不仅可以培养人正直与诚实的品质,也能锻炼人顽强的意志与勇气.难怪英国的法律大学,抑或美国西点军校,都开设了许多高深的数学课程,其目的不言而喻.
日本数学教育家米山国藏在从事了多年数学教育之后,说过一段意味深长的话:学生们在初中或高中所学到的数学知识,在进入了社会之后,如果没有什么机会应用,那么这种作为知识的数学,通常在出校门后不到一两年就会忘掉,然而他们不管从事什么工作,那种铭刻在人脑中的数学精神和数学思想方法,会长期的在他们的工作和生活中发挥着重要作用,这无疑是对数学文化内涵的一个精彩注释.
由此可见,数学的文化性体现在:它可以帮助我们更好的认识自然,了解世界,适应生活;它可以促进我们有条理的思考,有效的表达与交流,运用数学去分析问题和解决问题;它可以发展我们的主动性、责任感和自信心,培养我们实事求是的科学态度和勇于探索的创新精神.可以这么说,良好的数学修养是人的一生的可持续发展的基础.在未来社会里,没有相当的数学知识,就是没有文化,就是“文盲”.
数学是一种文化,那么,数学究竟是精英文化还是大众文化?看看伟大的数学家庞加莱是怎么说的,庞加莱说:
科学家研究自然并不是因为它有用,他研究它是因为他喜爱它,他喜爱它是因为它美.如果它不美,它就不值得被人知道,而如果自然不值得知道,人也就不值得活下去.当然,我这里说的并不是那种激动感官的美———那种品质上和外观上的美;并不是我低估那种美,远远不是如此,但那种美跟科学不相干;我说的是各部分之间和谐有序的更深刻的美,是一个纯洁的心灵所能掌握的美.
显然,庞加莱指的“科学”主要是理论科学,包括数学.他似乎也支持科学(包括数学)是一种精英文化.
今天看来,庞加莱的观点似乎叫人难以接受.我们认为,数学过分地远离公众,并不是一件好事;数学所具有的客观性,是任何智慧生命所不可避免的“命运”;一个数学问题或理论,如果只有一个人或少数几个人研究过,无法继承下去,最终只能成为后人从陈年故纸堆中翻出来的思维调料,这样的数学就算不上是好的数学.数学作为一种文化要被继承和发展,并不是几个数学家的事,而是大众的事,这注定了数学是一种大众文化.
当我们打开现行数学新教材时,无论是初中教材还是高中教材,数学的“文化味”扑面而来,那一幅幅充满“人性化”的插图,那一篇篇“通俗化”的阅读材料,无不透射出当代数学教育的“人性化”、“通俗化”、“大众化”的教育理念.的确,以弘扬“数学文化”为核心的数学教育才是科学的数学教育,才是完整的数学教育.然而,由于长期受应试教育的影响,我们的数学教育依然存在着某些误区:数学课程过分强调它的“逻辑性”、“演绎性”、“封闭性”;课堂教学中,解题教学占据了主导地位.通过大量练习来学习数学,是当今我国数学教学的主旋律.通过大量模仿性练习,这对提高学生基本运算能力、逻辑推演能力和解题能力的确有效,但培养这样的学生除了暂时能解几道题,还能干什么呢?他们无法体会到数学的文化价值,更缺乏创新精神,这不能不说是数学教育的一个严重的缺陷.要彻底改变这种现状,教材的改革固然重要,但归根到底还是取决于选拔人才机制的变革,取决于教育理念的更新,而教师有着责无旁贷的责任.

⑸ 数学与文化的背景知识

这篇课文节选自《数学与文化》一书的绪言。作者齐民友,1930年生,安徽芜湖人,数学教授,曾任武汉大学校长。1988年夏季的一天,作者和几位朋友谈到数学时,提出了“一个没有现代数学的文化是注定要衰落的”观点。后来,作者又为哲学系学生讲数学课,更加全面系统地研究了数学文化的特点以及数学对于人类文化的影响。课文节选的部分,体现了作者的一些主要观点。
数学是研究数与形的科学,它来源于生产,服务于生活,并不是空中楼阁。在古代埃及,尼罗河定期泛滥,重新丈量土地的需要发展了几何学;在古代中国,发达的农业生产及天文观测的需要,也促进了数学的发展。数学与社会文化始终是密切相关的。据说,两千多年前,柏拉图学园的门口挂着一块牌子,写着:“不懂几何的人不得入内。”柏拉图本人就曾做过一次题为“善的概念”的讲演,切实地探讨过“数学与文化”的问题。他认为,数学与伦理学中的“善”在理想化方面是相同的,用笔画出来的点、线、面都是一种抽象,因而也是一种理想。柏拉图之后的两千多年,即1939年12月,英国数学家、哲学家怀特海在美国哈佛大学作了一次讲演,题为“数学与善”,重申了柏拉图的思想,认为只有人类的智力才能“从实例中抽象出某一类型东西来。人类这个特性的最明显的表现就是数学概念和善的理想”。可见,数学并不是一棵傲然孤立的大树。它是在人类的物质需求和精神生活影响下生长起来的,同时它也以自己独特的魅力对人类文化的不同领域产生深远影响。

⑹ 关于数学的小知识

1,零

在很早的时候,以为“1”是“数字字符表”的开始,并且它进一步引出了2,3,4,5等其他数字。这些数字的作用是,对那些真实存在的物体,如苹果、香蕉、梨等进行计数。直到后来,才学会,当盒子里边已经没有苹果时,如何计数里边的苹果数。



2,数字系统

数字系统是一种处理“多少”的方法。不同的文化在不同的时代采用了各种不同的方法,从基本的“1,2,3,很多”延伸到今天所使用的高度复杂的十进制表示方法。

3,π

π是数学中最着名的数。忘记自然界中的所有其他常数也不会忘记它,π总是出现在名单中的第一个位置。如果数字也有奥斯卡奖,那么π肯定每年都会得奖。

π或者pi,是圆周的周长和它的直径的比值。它的值,即这两个长度之间的比值,不取决于圆周的大小。无论圆周是大是小,π的值都是恒定不变的。π产生于圆周,但是在数学中它却无处不在,甚至涉及那些和圆周毫不相关的地方。

4,代数

代数给了一种崭新的解决间题的方式,一种“回旋”的演年方法。这种“回旋”是“反向思维”的。让我们考虑一下这个问题,当给数字25加上17时,结果将是42。这是正向思维。这些数,需要做的只是把它们加起来。

但是,假如已经知道了答案42,并提出一个不同的问题,即现在想要知道的是什么数和25相加得42。这里便需要用到反向思维。想要知道未知数x的值,它满足等式25+x=42,然后,只需将42减去25便可知道答案。

5,函数

莱昂哈德·欧拉是瑞士数学家和物理学家。欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = F(x),他是把微积分应用于物理学的先驱者之一。

⑺ 有关数学的小知识

对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?

由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.

⑻ 数学文化有哪些

1.数学的理性精神
这种理性精神的养成与发展有着特别重要的意义,它是人类文明、特别是西方文明的核心所在.自第一次数学危机之后,以柏拉图为代表的哲学家(古代哲学与数学不分家)就开始意识到人类的直观的不可靠,数学的理性精神就开始发展.因此,在教学中,应该培养学生的独立思考、勇于批判的精神.并以此为重点,一以贯之通过数学教学来培养人类的理性精神,而这应该是数学教育的最高境界.
2.数学思想与方法
数学是人类抽象思维的产物,是一种理性化的思维范式和认识模式,它不仅仅是一些运算的规则和变换的技巧,它的实质内容是能够让人们终身受益的是思想方法.因此,在教学实践中应该始终关注数学的这个本质特征,避免单纯追求数学学习的知识化倾向,注重能力、思维的培养,让学生终身受益.
小学阶段的数学思想主要有:公理化、符号、集合、模型、化归、恒等与不等、数形结合、函数与对应、无限等重要的数学思想.数学方法:比较、分析、综合、抽象、概括、归纳、演绎、类化、转化与变形、对应、假设、猜想、观察、化简、推理和证明等重要的数学方法.
3.数学的美
数学是美,是一种具有新的美学维度的精神空间.正如英国着名哲学家罗素说:“数学,不但拥有真理,而且有至高的美.”数学的美不象自然美、艺术美那么鲜明、亮丽而潇洒,甚至也不象其它社会美那么地直观和具体,它抽象、严谨、深沉、冷峻而含蓄,是一种理智的美.因此,在教学实践中,我们应该努力发掘数学的特有的理智美,引导学生去欣赏、体会数学的美.小学阶段数学的美学价值主要包括:动态美、静态美、对称美、不对称美、直观美、抽象美…….
4.数学的应用价值
数学的文化意义还不仅在于知识本身和它的内涵,还在于它的应用价值.因此,在教学中应该加强数学与实际生活的联系,增强数学的应用性,让学生体验到数学的应用价值.
5.数学的历史文化
数学文化的内涵不仅表现在知识本身,还寓于它的历史,它是一种历史存在.因此,在教学过程中,充分揭示数学知识产生、发展的全过程.我们认为数学既是创造的,也是发明的,大到一门学科,小到一个符号,总是在一定的文化背景下出于某一种思考而产生的.我们的数学教育应当努力还原、再现这一发现或发明的过程,探寻数学知识的源泉,重建被割裂的数学知识与现实背景的联系.

⑼ 数学文化知识的内容有哪些

数学文化知识的内容有:

1、有生活的地方就有数学:人类靠着劳动的双手创造了财富,数学也和其他科学一样产生于实践。可以说有生活的地方就有数学。

你看木匠要做一个椭圆的桌面,拿了二根钉钉在木板上,然后用一条打结的绳子和粉笔,就可以在木板上画出一个漂亮的椭圆出来。

2、如果你时常邮寄信件,在贴邮票时你会发现一个这样的现象:任何大于7元的整数款项的邮费,往往可以用票面值3元和5元的邮票凑合起来。这里就有数学。如果你是整天要拿着刀和镬铲在厨房里工作的厨子,看来数学是和你无缘。可是你有没有想到就在你的工作也会出现数学问题。奇怪吗?事实上是不奇怪的。

3、数学家是怎样发现数学定理呢?他们是否有一个秘诀?如果能知道那是多好啊!是的,这里有一个秘诀,下面的一个真实故事就会告诉你秘诀是在哪里?在中国湖南省的一个农村生产队,在1964年以前禾苗年年受到虫害,粮食老是不够,亩产最多是五百多斤。

4、我国古代数学以计算为主,取得了十分辉煌的成就。其中十进位值制记数法、筹算和珠算在数学发展中所起的作用和显示出来的优越性,在世界数学史上也是值得称道的。十进位值制记数法曾经被马克思(1818—1883)称为“最妙的发明之一”。

5、筹算在我国古代用了大约两千年,在生产和科学技术以至人民生活中,发挥了重大的作用。但是它的缺点也是十分明显的:首先,在室外拿着一大把算筹进行计算就很不方便;其次,计算数字的位数越多,所需要的面积越大,受环境和条件的限制;此外,当计算速度加快的时候,很容易由于算筹摆弄不正而造成错误。