‘壹’ 外国着名数学家详细资料
八九世纪之交,德国产生了一位伟大的数学家,他就是人称“数学王子”的高斯。
高斯在上小学的时候,有一次数学老师出了个题目,1+2+…+100=?由于看出1+100=101,2+99=101,…,50+51=101共50个101,因而高斯立刻答出了5050的结果,此举令老师称赞不已。
对数学的痴迷,加上勤奋的学习,18岁时高斯发明了用圆规和直尺作正17边形的方法,从而解决了2000年来悬而未解的难题。他21岁大学毕业,22岁获博士学位。他在博士论文中证明了代数基本定理,即一元n次议程在复数范围内一定有根。在几何方面,高斯是非欧几何的发明人之一。高斯最重要的贡献还是在数论上,他的伟大着作《算术研究》标志着数论成为独立的数学分支学科的开始,而且这本书所讨论的内容成为直到20世纪数论研究的方向。高斯首先使用了同余记号,并系统而深入地阐述了同余式的理论;他证明了数论中的重要结果二次互反律等。高斯去世后,人们建立了以正17边形棱柱为基座的高斯像,以纪念这位伟大的数学家。
泰勒斯——西方理性数学的倡导者
泰勒斯(Thales,前624~前547),古希腊学者,出生于小亚细亚的米利都城的一个奴隶主贵族家庭。家族政治地位的显贵、经济生活的富足,泰勒斯均不屑一顾,而是倾注全部精力从事哲学与科学的钻研。在年轻时,他四处游学,到过金字塔之国,在那里学会了天文观测、几何测量;也到过两河流域的巴比伦,饱学了东方璀璨的文化。回到家乡米利都后,创立了爱奥尼亚学派,后成为古希腊着名的七大学派之首。泰勒斯素有“科学之父”的美称。
泰勒斯有句名言:“水是万物之本源,万物终归于水。”他否定了神创造一切的观念,开创了从世界本身来认识世界的正确道路。在科学上,他倡导理性,不满足于直观的感性的特殊的认识,崇尚抽象的理性的一般的知识。譬如,等腰三角形的两底角相等,并不是指我们所能画出的、个别的等腰三角形,而应该是指“所有的”等腰三角形。这就需要论证、推理,才能确保数学命题的正确性,才能使数学具有理论上的严密性和应用上的广泛性。泰勒斯的积极倡导,为毕达哥拉斯创立理性的数学奠定了基础。
泰勒斯在数学方面曾发现了不少平面几何学的定理,诸如:“直径平分圆周”、“三角形两等边对等角”、“两条直线相交,对顶角相等”、“三角形两角及其夹边已知,此三角形完全确定”、“半圆周角是直角”等,这些定理虽然简单,而且古埃及、巴比伦人也许早已知道,但是,泰勒斯把它们整理成一般性的命题,论证了它们的严格性,并在实践中广泛应用。据说他可以利用一根标杆,测量、推算出金字塔的高度。
泰勒斯在天文学方面也曾有不同凡响的工作,据说他曾测知公元前585年5月28日的一次全日食。当时正值战争肆虐,泰勒斯向世人宣告,若不停战,到时天神震怒!到了那天下午,两派将士仍激战不已,霎时间,太阳在天空中消失,星辰闪烁,大地一片漆黑。双方将士见此景象,确信太阳神真的发怒了,要降罪于人类,于是立即罢兵休战,从此铸剑为犁,和睦相处。
另据传说,泰勒斯醉心于钻研哲学与科学,且可谓清贫守道,而遭市井嘲笑。他不以为然地说,君子爱财取之有道。他在对气候预测的基础上,估计来年油料作物会大丰收,于是垄断了米利都和开奥斯两地的所有油坊,到收获季节以高价出租。有了钱,科学研究可以做得更好。
这两则传说,如果是真实的话,那么泰勒斯确实不愧于其墓碑上所镌刻的颂辞:“他是一位圣贤,又是一位天文学家,在日月星辰的王国里,他顶天立地、万古流芳。”不过,这也是一则传说,因为泰勒斯生活的年代离我们太久远了,没有确切可靠的资料。
‘贰’ 西方文化中的数学的作者简介
莫里斯·克莱因(Morris Kline,1908—1992),纽约大学库朗数学研究所的教授,荣誉退休教授,他曾在那里主持一个电磁研究部门达20年之久。1936年获得纽约大学教学专业博士学位,曾任纽约大学柯朗数学科学研究所电磁研究部主任长达20年;担任纽约大学研究生数学教学委员会主席11年;拥有无线电工程方面的多项发明专利。他的着作很多,包括《数学:确定性的丧失》和《数学与知识的探求》等。
‘叁’ 西方数学的特征
西方数学的主要内容是证明定理,而中国数学(侧重于古代)主要内容是解方程,解决各式各样的问题,着重计算,要把计算的过程,方法,步骤说出来。
中国古代数学的精髓是从问题出发,和西方的从公理出发完全不一样。或者说,中国的古代数学是一种算法的数学,也就是一种计算机数学。从这个意义上说,我们最古老的数学,却是计算机时代最适合,最现代化的数学。
‘肆’ 最早介绍西方科学知识的书籍是
A---农政全书~
明代科学家徐光启,最早将西方科学知识比较系统地介绍到中国。
他与利玛窦合作,翻译了欧几里得的《几何原本》前六卷,并于万历三十五年(公元1607年)刻印出版,这是我国最早翻译的西方数学书。直到今天,几何学中所用的一些贴切的名词术语,如平面、直角、垂线、钝角、直径、三角形、平行线、相似、外切等等,都是当年徐光启翻译时确定的。
在天文工作中,徐光启把欧洲天文学介绍、引入中国,使中国传统天文学开始吸收了一些先进的东西。其中有比中国原有的计算公式更简捷精确的球面三角法,以及“地球”、“地理经纬度”、“时差”、“蒙气差”等概念;有更先进的度量制度,如把圆周分成360度等。徐光启还在我国最早提倡用望远镜观测天体。
此外,徐光启还与利玛窦合译了《测量法义》、《泰西(指欧洲)水法》等一些科学着作,他本人也有不少关于历算、测量方面的着述。
‘伍’ 中西方数学发展史上有什么不同的特点
看这篇论文
中西方古代数学是两个完全不同体系,中国古代数学偏向构造性与机械性的算法体系,而以古希腊为代表的西方数学则侧重于逻辑演绎体系。
古代希腊的数学,自公元前600年左右开始,到公元641年为止共持续了近1300年。前期始于公元前600年,终于公元前336年希腊被并入马其顿帝国,活动范围主要集中在驱典附近;后期则起自亚历山大大帝时期,活动地点在亚历山大利亚;公元641年亚历山大城被阿拉伯人占领,古希腊文明时代宣告终结。 而中国数学起源于遥远的石器时代,经历了先秦萌芽时期(从远古到公元前200年);汉唐始创时期(公元前200年到公元1000年),元宋鼎盛时期(公元1000年到14世纪初),明清西学输入时期(十四世纪初到1919年)。
一、最早的有关数学的记载的比较
最早的希腊数学记载是拜占庭的希腊文的手抄本(可能做了若干修改),是在希腊原着写成后500年到1500年之间录写的。其原因是希腊的原文手稿没有保存下来。而成书最早的是帕普斯公元三世纪撰写的《数学汇编》和普罗克拉斯(公元5世纪)的《欧德姆斯概要》。《欧德姆斯概要》一书是以欧德姆斯写的一部着作(一部相当完整的包括公元前335年之前的希腊几何学历史概略,但已经丢失)为基础的。
中国最早的数学专着有《杜忠算术》和《许商算术》(由《汉书·艺文志》记载可知),但这两部着作都已失传。《算术书》是目前可以见到的中国最早的,也是一部比较完整的数学专着。这部着作于1984年1月,在湖北江陵张家山出土大批竹简中发现的,据有关专家认定《算术书》抄写于西汉初年(约公元前2世纪),成书时间应该更早,大约在战国时期。《算术书》采用问题集形式,共有60多个小标题,90多个题目,包括整数和分数四则运算、比例问题、面积和体积问题等。
结论:中国是四大文明古国之一,所有的文化创造,均源自华夏大地。一般来讲,中国的数学成果较古希腊为迟。
二、经典之作的比较 古希腊数学的经典之作是欧几里得的名着《几何原本》。亚历山大前期大数学家欧几里得完成了具有划时代意义工作——把以实验和观察而建立起来的经验科学,过渡为演绎的科学,把逻辑证明系统地引入数学中,欧几里得在《几何原本》中所采用公理、定理都是经过细致斟酌、筛选而成,并按照严谨的科学体系进行内容的编排,使之系统化、理论化,
超过他以前的所有着作。《几何原本》分十三篇.含有467个命题。 《几何原本》对世
‘陆’ 数学知识介绍
数学小知识--------------------------------------------------------------------------------
数学符号的起源
数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。
例如加号曾经有好几种,现在通用"+"号。
"+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。
"-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。
到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。
乘号曾经用过十几种,现在通用两种。一个是"×",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"×"号象拉丁字母"X",加以反对,而赞成用"· "号。他自己还提出用"п"表示相乘。可是这个符号现在应用到集合论中去了。
到了十八世纪,美国数学家欧德莱确定,把"×"作为乘号。他认为"×"是"+"斜起来写,是另一种表示增加的符号。
"÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所着的《代数学》里,才根据群众创造,正式将"÷"作为除号。
十六世纪法国数学家维叶特用"="表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。
1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等。
大于号"〉"和小于号"〈",是1631年英国着名代数学家赫锐奥特创用。至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了。大括号"{ }"和中括号"[ ]"是代数创始人之一魏治德创造
‘柒’ 在明末时期西方传来了哪些关于数学方面的知识
在数学方面,利玛窦和徐光启合译的欧几里德的数学名着《几何原本》,是关于平面几何学的系统性着作。由此传入中国一种崭新的逻辑推理方法,也大大丰富了中国几何学的内容与表述方式。原书15卷,当时只译出了前六卷,刻于1607年。利玛窦同李之藻合译的另一部数学着作《同文算指》,是我国最早介绍欧洲笔算的着作。在这部书中,从加减乘除到开方,中国和西方的算术第一次融会在一起。由于简便易行,经过后来的改进,得到了普遍的推广。1634年编成的《崇祯历书》中,也介绍了大量的西方数学方法,将西方平面三角学、球形三角学传入中国。汤若望也编写了《几何要法》和《新法算术》等数学着作。在17世纪的中国,计算工具共有4种:珠算、笔算、筹算、尺算,后三种都是从西方传来的。
‘捌’ 中西方数学发展史上有什么不同的特点
中西方古代数学是两个完全不同体系,中国古代数学偏向构造性与机械性的算法体系,而以古希腊为代表的西方数学则侧重于逻辑演绎体系。
东方数学(以中国古代数学为代表)主要特征:1具有实用性,较强的社会性;2算法程序化;3. 寓理于算。
西方数学主要特征:1封闭的逻辑演绎体系;2古希腊的数字与神秘性结合;3将数学抽象化;4希腊数学重视数学在美学上的意义。
下面这部分转自吴文俊院士,我很同意他的观点,你不妨看看,希望对你有所帮助。
一提到科学或者数学,脑子里想到的就是以欧美为代表的西方科学和数学。我要讲的是,除了以西方为代表的科学和数学之外,事实上还有跟它们完全不同的所谓东方科学与数学。这个意见也不是我第一次这样讲,在《中国科学技术史》这一宏篇巨着里面就已经介绍了这一点。李约瑟在着作里讲,东方不仅有科学和数学,而且跟西方走的是完全不同的道路,有不同的思想方法。究竟怎么不一样呢?
所谓东方数学,就是中国的古代数学及印度的古代数学。东西方数学的异同,也就是现在欧美的数学跟东方数学(主要是古代的中国数学)有什么异同。我们学现代数学(也就是西方数学),主要内容是证明定理;而中国的古代数学根本不考虑定理不定理,没有这个概念,它的主要内容是解方程。我们着重解方程,解决各式各样的问题,着重计算,要把计算的过程、方法、步骤说出来。这个方法步骤,用现在的话来讲,就相当于所谓算法。美国一位计算机数学大师说,计算机数学即是算法的数学。中国的古代数学是一种算法的数学,也就是一种计算机的数学。进入到计算机时代,这种计算机数学或者是算法的数学,刚巧是符合时代要求,符合时代精神的。从这个意义上来讲,我们最古老的数学也是计算机时代最适合、最现代化的数学。这是我个人的一种看法。
我们再来说一下东方数学,也就是中国古代数学的精神实质是什么。我们古代数学的精髓就是从问题出发的精神,和西方的从公理出发完全不一样。为了从问题出发,解决各式各样的问题,就带动了理论和方法的发展。从问题出发,以问题带动学科的发展,这是整个数学发展的总的面貌。
为什么解决问题要解方程呢?原因很简单:一个问题有原始的数据,要求解决这个问题得出答案,这个答案也应是以某种数据的形式来表示的。在原始数据和要求数据之间,有某种形式的关系,这种由已知数和未知数建立起来的关系就是一种方程。为了解决形形色色的问题,就要解决形形色色的方程。因此,解方程变成中国两千多年历史发展中主要的目标所在。
我想特别提到一点,就是我们经常跟着外国人的脚步走。我们往往花很大的力气从事某种猜测的研究,希望能够解决或者至少推进一步。可是不管你对这个猜测证明也好,推进也好,提出这个猜测的人,就好比老师出了一个题目,即使你把这它解决了,也无非是把老师的题目做出来,还是低人一等,出题目的老师还是高你一等。在计算机时代,这个问题值得思考。当然,不管谁提出来这样的问题,我们都应想办法对其有所贡献,可是不能止步于此,我们应该出题目给人家做,这个性质是完全不一样的。
我们正在进入计算机时代,计算机只能处理有限的问题,所以相应的数学应该是一种处理有限事物的数学,在数学上叫“组合数学”。历史上,组合数学创始于中国,以贾宪为首,一系列的成就不断涌现。我们在数学方面得到许多这样的成就绝不是偶然的。东方的数学有一定的思考方法,是有计划、有步骤、有思想地进行的。具体地讲,它有一个基本的模式,就是从实际问题出发,形成一些新的概念,产生一些新的方法,再提高到理论上,建立一般的原理(就像牛顿有关的定理),用这样的原理解决形形色色更复杂、更重要、更艰深的实际问题,这样数学就不断地上升和发展。这就是古代数学发展的大致理论体系。
我们现在拥有计算机这样的便捷武器,又拥有切合计算机时代使用的古代数学。怎样进行工作,才能对得起古代的前辈,建立起我们新时代的新数学,并在不远的将来,使东方的数学超过西方的数学,不断地出题目给西方做,我想,这值得我们大家思考和需要努力的方面。 收起
‘玖’ 世界着名数学家的简介
世界十大数学家是:1.欧几里得、2.刘微、3.秦九韶、4.笛卡尔、5.费马、6.莱布尼茨、7.欧拉、8.拉格朗日、9.高斯、10.希尔伯特
1. 欧几里德(Euclid of Alexandria),希腊数学家。约生于公元前330年,约殁于公元前260年。
欧几里德是古代希腊最负盛名、最有影响的数学家之一,他是亚历山大里亚学派的成员。欧几里德写过一本书,书名为《几何原本》(Elements)共有13卷。这一着作对于几何学、数学和科学的未来发展,对于西方人的整个思维方法都有很大的影响。《几何原本》的主要对象是几何学,但它还处理了数论、无理数理论等其他课题。欧几里德使用了公理化的方法。公理(axioms)就是确定的、不需证明的基本命题,一切定理都由此演绎而出。在这种演绎推理中,每个证明必须以公理为前提,或者以被证明了的定理为前提。这一方法后来成了建立任何知识体系的典范,在差不多2000年间,被奉为必须遵守的严密思维的范例。《几何原本》是古希腊数学发展的顶峰。
欧几里得 (活动于约前300-?)
古希腊数学家。以其所着的《几何原本》(简称《原本》)闻名于世。关于他的生平,现在知道的很少。早年大概就学于雅典,深知柏拉图的学说。公元前300年左右,在托勒密王(公元前364~前283)的邀请下,来到亚历山大,长期在那里工作。他是一位温良敦厚的教育家,对有志数学之士,总是循循善诱。但反对不肯刻苦钻研、投机取巧的作风,也反对狭隘实用观点。据普罗克洛斯(约410~485)记载,托勒密王曾经问欧几里得,除了他的《几何原本》之外,还有没有其他学习几何的捷径。欧几里得回答说: “ 在几何里,没有专为国王铺设的大道。 ” 这句话后来成为传诵千古的学习箴言。斯托贝乌斯(约 500)记述了另一则故事,说一个学生才开始学第一个命题,就问欧几里得学了几何学之后将得到些什么。欧几里得说:给他三个钱币,因为他想在学习中获取实利。
欧几里得将公元前 7世纪以来希腊几何积累起来的丰富成果整理在严密的逻辑系统之中,使几何学成为一门独立的、演绎的科学。除了《几何原本》之外,他还有不少着作,可惜大都失传。《已知数》是除《原本》之外惟一保存下来的他的希腊文纯粹几何着作,体例和《原本》前6卷相近,包括94个命题,指出若图形中某些元素已知,则另外一些元素也可以确定。《图形的分割》现存拉丁文本与阿拉伯文本,论述用直线将已知图形分为相等的部分或成比例的部分。《光学》是早期几何光学着作之一,研究透视问题,叙述光的入射角等于反射角,认为视觉是眼睛发出光线到达物体的结果。还有一些着作未能确定是否属于欧几里得,而且已经散失。
欧几里德的《几何原本》中收录了23个定义,5个公理,5个公设,并以此推导出48个命题(第一卷)。
2.刘徽 生平
(生于公元250年左右),三国后期魏国人,是中国古代杰出的数学家,也是中国古典数学理论的奠基者之一.其生卒年月、生平事迹,史书上很少记载。据有限史料推测,他是魏晋时代山东临淄或淄川一带人。终生未做官。
着作
刘徽的数学着作留传后世的很少,所留之作均为久经辗转传抄。他的主要着作有:
《九章算术注》10卷;
《重差》1卷,至唐代易名为《海岛算经》;
《九章重差图》l卷,可惜后两种都在宋代失传。
数学成就
刘徽的数学成就大致为两方面:
一是清理中国古代数学体系并奠定了它的理论基础。这方面集中体现在《九章算术注》中。它实已形成为一个比较完整的理论体系:
①在数系理论方面
用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;在开方术的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。
②在筹式演算理论方面
先给率以比较明确的定义,又以遍乘、通约、齐同等三种基本运算为基础,建立了数与式运算的统一的理论基础,他还用“率”来定义中国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。
③在勾股理论方面
逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图形的论析,形成了中国特色的相似理论。
④在面积与体积理论方面
用出入相补、以盈补虚的原理及“割圆术”的极限方法提出了刘徽原理,并解决了多种几何形、几何体的面积、体积计算问题。这些方面的理论价值至今仍闪烁着余辉。
二是在继承的基础上提出了自己的创见。这方面主要体现为以下几项有代表性的创见:
①割圆术与圆周率
他在《九章算术•圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。他首先从圆内接六边形开始割圆,每次边数倍增,算到192边形的面积,得到π=157/50=3.14,又算到3072边形的面积,得到π=3927/1250=3.1416,称为“徽率”。
②刘徽原理
在《九章算术•阳马术》注中,他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。
③“牟合方盖”说
在《九章算术•开立圆术》注中,他指出了球体积公式V=9D3/16(D为球直径)的不精确性,并引入了“牟合方盖”这一着名的几何模型。“牟合方盖”是指正方体的两个轴互相垂直的内切圆柱体的贯交部分。
④方程新术
在《九章算术•方程术》注中,他提出了解线性方程组的新方法,运用了比率算法的思想。
⑤重差术
在白撰《海岛算经》中,他提出了重差术,采用了重表、连索和累矩等测高测远方法。他还运用“类推衍化”的方法,使重差术由两次测望,发展为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次测望的问题。
贡献和地位
刘徽的工作,不仅对中国古代数学发展产生了深远影响,而且在世界数学吏上也确立了崇高的历史地位。鉴于刘徽的巨大贡献,所以不少书上把他称作“中国数学史上的牛顿”。
费马
费马(1601~1665)
Fermat,Pierre de
费马是法国数学家,1601年8月17日出生于法国南部图卢兹附近的博蒙·德·洛马涅。他的父亲多米尼加国·费马在当地开了一家大皮革商店,拥有相当丰厚的产业,使得费马从小生活在富裕舒适的环境中。
费马的父亲由于富有和经营有道,颇受人们尊敬,并因此获得了地方事务顾问的头衔,但费马小的时候并没有因为家境的富裕而产生多少优越感。费马的母亲名叫克拉莱·德·罗格,出身穿袍贵族。多米尼加国的大富与罗格的大贵族构筑了费马极富贵的身价。
费马小时候受教于他的叔叔皮埃尔,受到了良好的启蒙教育,培养了他广泛的兴趣和爱好,对他的性格也产生了重要的影响。直到14岁时,费马才进入博蒙·德·洛马涅公学,毕业后先后在奥尔良大学和图卢兹大学学习法律。
17世纪的法国,男子最讲究的职业是当律师,因此,男子学习法律成为时髦,也使人敬羡。有趣的是,法国为那些有产的而缺少资历的“准律师”尽快成为律师创造了很好的条件。1523年,佛朗期瓦一世组织成立了一个专门鬻卖官爵的机关,公开出售官职。这种官职鬻卖的社会现象一经产生,便应时代的需要而一发不可收拾,且弥留今日。
鬻卖官职,一方面迎合了那些富有者,使其获得官位从而提高社会地位,另一方面也使政府的财政状况得以好转。因此到了17世纪,除宫廷官和军官以外的任何官职都可以买卖了。直到今日,法院的书记官、公证人、传达人等职务,仍没有完全摆脱买卖性质。法国的买官特产,使许多中产阶级从中受惠,费马也不例外。费马尚没有大学毕业,便在博蒙·德·洛马涅买好了“律师”和“参议员”的职位。等到费马毕业返回家乡以后,他便很容易地当上了图卢兹议会的议员,时值1631年。
尽管费马从步入社会直到去世都没有失去官职,而且逐年得到提升,但是据记载,费马并没有什么政绩,应付官场的能力也极普通,更谈不上什么领导才能。不过,费马并未因此而中断升迁。在费马任了七年地方议会议员之后,升任了调查参议员,这个官职有权对行政当局进行调查和提出质疑。
1642年,有一位权威人士叫勃里斯亚斯,他是最高法院顾问。勃里斯亚斯推荐费马进入了最高刑事法庭和法国大理院主要法庭,这使得费马以后得到了更好的升迁机会。1646年,费马升任议会首席发言人,以后还当过天主教联盟的主席等职。费马的官场生涯没有什么突出政绩值得称道,不过费马从不利用职权向人们勒索、从不受贿、为人敦厚、公开廉明,赢得了人们的信任和称赞。
费马的婚姻使费马跻身于穿袍贵族的行列,费马娶了他的舅表妹露伊丝·德·罗格。原本就为母亲的贵族血统而感骄傲的费马,如今干脆在自己的姓名上加上了贵族姓氏的标志“de”。
费马生有三女二男,除了大女儿克拉莱出嫁之外,四个子女都使费马感到体面。两个女儿当上了牧师,次子当上了菲玛雷斯的副主教。尤其是长子克莱曼特·萨摩尔,他不仅继承了费马的公职,在1665年当上了律师,而且还整理了费马的数学论着。如果不是费马长子积极出版费马的数学论着,很难说费马能对数学产生如此重大的影响,因为大部分论文都是在费马死后,由其长子负责发表的。从这个意义上说,萨摩尔也称得上是费马事业上的继承人。
对费马来说,真正的事业是学术,尤其是数学。费马通晓法语、意大利语、西班牙语、拉丁语和希腊语,而且还颇有研究。语言方面的博学给费马的数学研究提供了语言工具和便利,使他有能力学习和了解阿拉伯和意大利的代数以及古希腊的数学。正是这些,可能为费马在数学上的造诣莫定了良好基础。在数学上,费马不仅可以在数学王国里自由驰骋,而且还可以站在数学天地之外鸟瞰数学。这也不能绝对归于他的数学天赋,与他的博学多才多少也是有关系的。
费马生性内向,谦抑好静,不善推销自己,不善展示自我。因此他生前极少发表自己的论着,连一部完整的着作也没有出版。他发表的一些文章,也总是隐姓埋名。《数学论集》还是费马去世后由其长子将其笔记、批注及书信整理成书而出版的。我们现在早就认识到时间性对于科学的重要,即使在l7世纪,这个问题也是突出的。费马的数学研究成果不及时发表,得不到传播和发展,并不完全是个人的名誉损失,而是影响了那个时代数学前进的步伐。
费马一生身体健康,只是在1652年的瘟疫中险些丧命。1665年元旦一过,费马开始感到身体有变,因此于1月l0日停职。第三天,费马去世。费马被安葬在卡斯特雷斯公墓,后来改葬在图卢兹的家族墓地中。
费马一生从未受过专门的数学教育,数学研究也不过是业余之爱好。然而,在17世纪的法国还找不到哪位数学家可以与之匹敌:他是解析几何的发明者之一;对于微积分诞生的贡献仅次于牛顿、莱布尼茨,概率论的主要创始人,以及独承17世纪数论天地的人。此外,费马对物理学也有重要贡献。一代数学大才费马堪称是17世纪法国最伟大的数学家。
17世纪伊始,就预示了一个颇为壮观的数学前景。而事实上,这个世纪也正是数学史上一个辉煌的时代。几何学首先成了这一时代最引入注目的引玉之明珠,由于几何学的新方法—代数方法在几何学上的应用,直接导致了解析几何的诞生;射影几何作为一种崭新的方法开辟了新的领域;由古代的求积问题导致的极微分割方法引入几何学,使几何学产生了新的研究方向,并最终促进了微积分的发明。几何学的重新崛起是与一代勤于思考、富于创造的数学家是分不开的,费马就是其中的一位。
对解析几何的贡献
费马独立于笛卡儿发现了解析几何的基本原理。
1629年以前,费马便着手重写公元前三世纪古希腊几何学家阿波罗尼奥斯失传的《平面轨迹》一书。他用代数方法对阿波罗尼奥斯关于轨迹的一些失传的证明作了补充,对古希腊几何学,尤其是阿波罗尼奥斯圆锥曲线论进行了总结和整理,对曲线作了一般研究。并于1630年用拉丁文撰写了仅有八页的论文《平面与立体轨迹引论》。
费马于1636年与当时的大数学家梅森、罗贝瓦尔开始通信,对自己的数学工作略有言及。但是《平面与立体轨迹引论》的出版是在费马去世14年以后的事,因而1679年以前,很少有人了解到费马的工作,而现在看来,费马的工作却是开创性的。
《平面与立体轨迹引论》》中道出了费马的发现。他指出:“两个未知量决定的—个方程式,对应着一条轨迹,可以描绘出一条直线或曲线。”费马的发现比笛卡尔发现解析几何的基本原理还早七年。费马在书中还对一般直线和圆的方程、以及关于双曲线、椭圆、抛物线进行了讨论。
笛卡儿是从一个轨迹来寻找它的方程的,而费马则是从方程出发来研究轨迹的,这正是解析几何基本原则的两个相反的方面。
在1643年的一封信里,费马也谈到了他的解析几何思想。他谈到了柱面、椭圆抛物面、双叶双曲面和椭球面,指出:含有三个未知量的方程表示一个曲面,并对此做了进一步地研究。
对微积分的贡献
16、17世纪,微积分是继解析几何之后的最璀璨的明珠。人所共知,牛顿和莱布尼茨是微积分的缔造者,并且在其之前,至少有数十位科学家为微积分的发明做了奠基性的工作。但在诸多先驱者当中,费马仍然值得一提,主要原因是他为微积分概念的引出提供了与现代形式最接近的启示,以致于在微积分领域,在牛顿和莱布尼茨之后再加上费马作为创立者,也会得到数学界的认可。
曲线的切线问题和函数的极大、极小值问题是微积分的起源之一。这项工作较为古老,最早可追溯到古希腊时期。阿基米德为求出一条曲线所包任意图形的面积,曾借助于穷竭法。由于穷竭法繁琐笨拙,后来渐渐被人遗忘、直到16世纪才又被重视。由于开普勒在探索行星运动规律时,遇到了如何确定椭圆形面积和椭圆弧长的问题,无穷大和无穷小的概念被引入并代替了繁琐的穷竭法。尽管这种方法并不完善,但却为自卡瓦列里到费马以来的数学家开辟厂一个十分广阔的思考空间。
费马建立了求切线、求极大值和极小值以及定积分方法,对微积分做出了重大贡献。
对概率论的贡献
早在古希腊时期,偶然性与必然性及其关系问题便引起了众多哲学家的兴趣与争论,但是对其有数学的描述和处理却是15世纪以后的事。l6世纪早期,意大利出现了卡尔达诺等数学家研究骰子中的博弈机会,在博弈的点中探求赌金的划分问题。到了17世纪,法国的帕斯卡和费马研究了意大利的帕乔里的着作《摘要》,建立了通信联系,从而建立了概率学的基础。
费马考虑到四次赌博可能的结局有2×2×2×2=16种,除了一种结局即四次赌博都让对手赢以外,其余情况都是第一个赌徒获胜。费马此时还没有使用概率一词,但他却得出了使第一个赌徒赢得概率是15/16,即有利情形数与所有可能情形数的比。这个条件在组合问题中一般均能满足,例如纸牌游戏,掷银子和从罐子里模球。其实,这项研究为概率的数学模型一概率空间的抽象奠定了博弈基础,尽管这种总结是到了1933年才由柯尔莫戈罗夫作出的。
费马和帕斯卡在相互通信以及着作中建立了概率论的基本原则——数学期望的概念。这是从点的数学问题开始的:在一个被假定有同等技巧的博弈者之间,在一个中断的博弈中,如何确定赌金的划分,已知两个博弈者在中断时的得分及在博弈中获胜所需要的分数。费马这样做出了讨论:一个博弈者A需要4分获胜,博弈者B需要3分获胜的情况,这是费马对此种特殊情况的解。因为显然最多四次就能决定胜负。
一般概率空间的概念,是人们对于概念的直观想法的彻底公理化。从纯数学观点看,有限概率空间似乎显得平淡无奇。但一旦引入了随机变量和数学期望时,它们就成为神奇的世界了。费马的贡献便在于此。
对数论的贡献
17世纪初,欧洲流传着公元三世纪古希腊数学家丢番图所写的《算术》一书。l621年费马在巴黎买到此书,他利用业余时间对书中的不定方程进行了深入研究。费马将不定方程的研究限制在整数范围内,从而开始了数论这门数学分支。
费马在数论领域中的成果是巨大的,其中主要有:
(1)全部素数可分为4n+1和4n+3两种形式。
(2)形如4n+1的素数能够,而且只能够以一种方式表为两个平方数之和。
(3)没有一个形如4n+3的素数,能表示为两个平方数之和。
(4)形如4n+1的素数能够且只能够作为一个直角边为整数的直角三角形的斜边;4n+1的平方是且只能是两个这种直角三角形的斜边;类似地,4n+1的m次方是且只能是m个这种直角三角形的斜边。
(5)边长为有理数的直角三角形的面积不可能是一个平方数。
(6)4n+1形的素数与它的平方都只能以一种方式表达为两个平方数之和;它的3次和4次方都只能以两种表达为两个平方数之和;5次和6次方都只能以3种方式表达为两个平方数之和,以此类推,直至无穷。
对光学的贡献
费马在光学中突出的贡献是提出最小作用原理,也叫最短时间作用原理。这个原理的提出源远流长。早在古希腊时期,欧几里得就提出了光的直线传播定律相反射定律。后由海伦揭示了这两个定律的理论实质——光线取最短路径。经过若干年后,这个定律逐渐被扩展成自然法则,并进而成为一种哲学观念。—个更为一般的“大自然以最短捷的可能途径行动”的结论最终得出来,并影响了费马。费马的高明之处则在于变这种的哲学的观念为科学理论。
费马同时讨论了光在逐点变化的介质中行径时,其路径取极小的曲线的情形。并用最小作用原理解释了一些问题。这给许多数学家以很大的鼓舞。尤其是欧拉,竞用变分法技巧把这个原理用于求函数的极值。这直接导致了拉格朗日的成就,给出了最小作用原理的具体形式:对一个质点而言,其质量、速度和两个固定点之间的距离的乘积之积分是一个极大值和极小值;即对该质点所取的实际路径来说,必须是极大或极小。