当前位置:首页 » 基础知识 » 数学的函数知识点
扩展阅读
如何和小爱同学匹配 2024-11-15 23:16:40
黄疸同学哪个 2024-11-15 23:00:50

数学的函数知识点

发布时间: 2022-07-05 20:25:43

❶ 初中数学函数相关全部知识点

初中数学知识点归纳(口诀)——函数
正比例函数的鉴别
判断正比例函数,检验当分两步走。
一量表示另一量,
有没有。
若有再去看取值,全体实数都需要。
区分正比例函数,衡量可分两步走。
一量表示另一量,
是与否。
若有还要看取值,全体实数都要有。
正比例函数的图象与性质
正比函数图直线,经过
和原点。
k正一三负二四,变化趋势记心间。
k正左低右边高,同大同小向爬山。
k负左高右边低,一大另小下山峦。
一次函数
一次函数图直线,经过
点。
k正左低右边高,越走越高向爬山。
k负左高右边低,越来越低很明显。

❷ 初二数学一次函数知识点有哪些

初二数学一次函数知识点归纳有:

1、正比例函数和一次函数的概念


基础知识归纳:一般地,如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数。特别地,当一次函数y=kx+b中的b为0时,y=kx(k为常数,k≠0)。这时,y叫做x的正比例函数。


基本方法归纳:判断一个函数是否是一次函数关键是看它的k是否不为0和自变量指数是否为1;而要判断是否为正比例函数还要在一次函数基础上加上b=0这个条件。





2、一次函数的图像


基础知识归纳:所有一次函数的图像都是一条直线;一次函数y=kx+b的图像是经过点(0,b)的直线。


正比例函数y=k/x的图像是经过原点(0,0)的直线。


k>0,b>0时,图像经过一、二、三象限,y随x的增大而增大。


k>0,b<0时,图像经过一、三、四象限,y随x的增大而增大。


k<0,b>0时,图像经过一、二、四象限,y随x的增大而减小。


k<0,b<0时,图像经过二、三、四象限,y随x的增大而减小。


当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。


基本方法归纳:一次函数y=kx+b是由正比例函数y=kx上下平移得到的,要判断一次函数经过的象限,再由b的正负得向上平移还是向下平移,从而得出所过象限。而增减性只由k的正负决定,与b的取值无关。

3、正比例函数和一次函数解析式的确定


基础知识归纳:确定一个正比例函数,就是要确定正比例函数定义式y=kx(k≠0)中的常数k。确定一个一次函数,需要确定一次函数定义式y=kx+b(k≠0)中的常数k和b。解这类问题的一般方法是待定系数法。


4、一次函数图象与坐标轴围成的三角形的面积


基础知识归纳:直线y=kx+b与x轴的交点坐标和与Y轴的交点坐标;能求直线与两坐标轴围成的三角形的面积。


5、一次函数的应用


基础知识归纳:主要涉及到经济决策、市场经济等方面的应用.利用一次函数并与方程(组)、不等式(组)联系在一起决实际生活中的利率、利润、租金、生产方案的设计问题。


基本方法归纳:利用函数知识解应用题的一般步骤:


(1)设定实际问题中的变量。


(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式。


(3)确定自变量的取值范围,保证自变量具有实际意义。


(4)利用函数的性质解决问题。


(5)写出答案。


注意问题归纳:读图时首先要弄清横纵坐标表示的实际意义,还要会将图像上点的坐标转化成表示实际意义的量;自变量取值范围要准确,要满足实际意义。

❸ 高一数学的函数知识点

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 注意:
1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1;
(5)如果函数是由一些基本函数通过四则运算结合而成的。那么,它的定义域是使各部分都有意义的x的值组成的集合. (6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义.。 1.函数的单调性(局部性质) (1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.。
如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数。区间D称为y=f(x)的单调减区间。
注意:函数的单调性是函数的局部性质。
图象的特点
如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。
函数单调区间与单调性的判定方法
(A) 定义法:
1 任取x1,x2∈D,且x1<x2;
2 作差f(x1)-f(x2);
3 变形(通常是因式分解和配方);
4 定号(即判断差f(x1)-f(x2)的正负);
5 下结论(指出函数f(x)在给定的区间D上的单调性)。
(B)图象法(从图象上看升降)
(C)复合函数的单调性
复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减” 。
注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集。
资料;五年高考三年模拟

❹ 初二数学函数知识点

初二数学《函数》知识点总结
(一)平面直角坐标系
1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系
2、已知点的坐标找出该点的方法:
分别以点的横坐标、纵坐标在数轴上表示的点为垂足,作x轴y轴的的垂线,两垂线的交点即为要找的点。
3、已知点求出其坐标的方法:
由该点分别向x轴y轴作垂线,垂足在x轴上的坐标是改点的横坐标,垂足在y轴上的坐标是该点的纵坐标。
4、各个象限内点的特征:
第一象限:(+,+) 点P(x,y),则x>0,y>0;
第二象限:(-,+) 点P(x,y),则x<0,y>0;
第三象限:(-, -) 点P(x,y),则x<0,y<0;
第四象限:(+,-) 点P(x,y),则x>0,y<0;
5、坐标轴上点的坐标特征:
x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0 , 0)。两坐标轴的点不属于任何象限。
6、点的对称特征:已知点P(m,n),
关于x轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号
关于y轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号
关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号
7、平行于坐标轴的直线上的点的坐标特征:
平行于x轴的直线上的任意两点:纵坐标相等;
平行于y轴的直线上的任意两点:横坐标相等。
8、各象限角平分线上的点的坐标特征:
第一、三象限角平分线上的点横、纵坐标相等。
点P(a,b)关于第一、三象限坐标轴夹角平分线的对称点坐标是(b, a)
第二、四象限角平分线上的点横纵坐标互为相反数。
点P(a,b)关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b,-a)
9、点P(x,y)的几何意义:
点P(x,y)到x轴的距离为 |y|,
点P(x,y)到y轴的距离为 |x|。
点P(x,y)到坐标原点的距离为
10、两点之间的距离:
X轴上两点为A 、B |AB|
Y轴上两点为C 、D |CD|
已知A 、B AB|=
11、中点坐标公式:已知A 、B M为AB的中点
则:M=( , )
12、点的平移特征: 在平面直角坐标系中,
将点(x,y)向右平移a个单位长度,可以得到对应点( x-a,y);
将点(x,y)向左平移a个单位长度,可以得到对应点(x+a ,y);
将点(x,y)向上平移b个单位长度,可以得到对应点(x,y+b);
将点(x,y)向下平移b个单位长度,可以得到对应点(x,y-b)。
注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。
(二)函数的基本知识:

知识网络图

基本概念
1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
*判断A是否为B的函数,只要看B取值确定的时候,A是否有唯一确定的值与之对应
3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:
(1)关系式为整式时,函数定义域为全体实数;
(2)关系式含有分式时,分式的分母不等于零;
(3)关系式含有二次根式时,被开放方数大于等于零;
(4)关系式中含有指数为零的式子时,底数不等于零;
(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
5、函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
7、描点法画函数图形的一般步骤
第一步:列表(表中给出一些自变量的值及其对应的函数值);
第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);
第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、函数的表示方法
列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

(三)正比例函数和一次函数
1、正比例函数及性质
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.
注:正比例函数一般形式 y=kx (k不为零) ① k不为零 ② x指数为1 ③ b取零
当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.
(1) 解析式:y=kx(k是常数,k≠0)
(2) 必过点:(0,0)、(1,k)
(3) 走向:k>0时,图像经过一、三象限;k<0时,图像经过二、四象限
(4) 增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小
(5) 倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴
2、一次函数及性质
一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.
注:一次函数一般形式 y=kx+b (k不为零) ① k不为零 ②x指数为1 ③ b取任意实数
一次函数y=kx+b的图象是经过(0,b)和(- ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)
(1)解析式:y=kx+b(k、b是常数,k 0)
(2)必过点:(0,b)和(- ,0)
(3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限
b>0,图象经过第一、二象限;b<0,图象经过第三、四象限
直线经过第一、二、三象限 直线经过第一、三、四象限
直线经过第一、二、四象限 直线经过第二、三、四象限
注:y=kx+b中的k,b的作用:
1、k决定着直线的变化趋势
① k>0 直线从左向右是向上的 ② k<0 直线从左向右是向下的
2、b决定着直线与y轴的交点位置
① b>0 直线与y轴的正半轴相交 ② b<0 直线与y轴的负半轴相交
(4)增减性: k>0,y随x的增大而增大;k<0,y随x增大而减小.
(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.
(6)图像的平移: 当b>0时,将直线y=kx的图象向上平移b个单位;
当b<0时,将直线y=kx的图象向下平移b个单位.
3、一次函数y=kx+b的图象的画法.
根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b), .即横坐标或纵坐标为0的点.
注:对于y=kx+b 而言,图象共有以下四种情况:
1、k>0,b>0 2、k>0,b<0 3、k<0,b<0 4、k<0,b>0

b>0 b<0 b=0
k>0 经过第一、二、三象限 经过第一、三、四象限 经过第一、三象限

图象从左到右上升,y随x的增大而增大
k<0 经过第一、二、四象限 经过第二、三、四象限 经过第二、四象限

图象从左到右下降,y随x的增大而减小
4、直线y=kx+b(k≠0)与坐标轴的交点.
(1)直线y=kx与x轴、y轴的交点都是(0,0);
(2)直线y=kx+b与x轴交点坐标为 与 y轴交点坐标为(0,b).

5、用待定系数法确定函数解析式的一般步骤:
(1)根据已知条件写出含有待定系数的函数关系式;
(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;
(3)解方程得出未知系数的值;
(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.

6、两条直线交点坐标的求法:
方法:联立方程组求x、y
例题:已知两直线y=x+6 与y=2x-4交于点P,求P点的坐标?
7、直线y=k1x+b1与y=k2x+b2的位置关系
(1)两直线平行:k1=k2且b1 b2
(2)两直线相交:k1 k2
(3)两直线重合:k1=k2且b1=b2

8、正比例函数与一次函数图象之间的关系
一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).

9、一元一次方程与一次函数的关系
任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.

10、一次函数与一元一次不等式的关系
任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.
11、一次函数与二元一次方程组
(1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y= 的图象相同.
(2)二元一次方程组 的解可以看作是两个一次函数y= 和y= 的图象交点.
12、函数应用问题 (理论应用 实际应用)
(1)利用图象解题 通过函数图象获取信息,并利用所获取的信息解决简单的实际问题.
(2)经营决策问题 函数建模的关键是将实际问题数学化,从而解决最佳方案,最佳策略等问题.建立一次函数模型解决实际问题,就是要从实际问题中抽象出两个变量,再寻求出两个变量之间的关系,构建函数模型,从而利用数学知识解决实际问题.

❺ 数学函数知识点总结

数学函数知识点总结

1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

中元素各表示什么?
A表示函数y=lgx的定义域,B表示的是值域,而C表示的却是函数上的点的轨迹

2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况
注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。

显然,这里很容易解出A={-1,3}.而B最多只有一个元素。故B只能是-1或者3。根据条件,可以得到a=-1,a=1/3. 但是, 这里千万小心,还有一个B为空集的情况,也就是a=0,不要把它搞忘记了。

3. 注意下列性质:

要知道它的来历:若B为A的子集,则对于元素a1来说,有2种选择(在或者不在)。同样,对于元素a2, a3,……an,都有2种选择,所以,总共有种选择, 即集合A有个子集。
当然,我们也要注意到,这种情况之中,包含了这n个元素全部在何全部不在的情况,故真子集个数为,非空真子集个数为

(3)德摩根定律:

有些版本可能是这种写法,遇到后要能够看懂
4. 你会用补集思想解决问题吗?(排除法、间接法)

的取值范围。

注意,有时候由集合本身就可以得到大量信息,做题时不要错过; 如告诉你函数f(x)=ax2+bx+c(a>0) 在上单调递减,在上单调递增,就应该马上知道函数对称轴是x=1.或者,我说在上 ,也应该马上可以想到m,n实际上就是方程 的2个根
5、熟悉命题的几种形式、

命题的四种形式及其相互关系是什么?
(互为逆否关系的命题是等价命题。)
原命题与逆否命题同真、同假;逆命题与否命题同真同假。
6、熟悉充要条件的性质(高考经常考)
满足条件,满足条件,
若 ;则是的充分非必要条件;
若 ;则是的必要非充分条件;
若 ;则是的充要条件;
若 ;则是的既非充分又非必要条件;
7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?
(一对一,多对一,允许B中有元素无原象。)
注意映射个数的求法。如集合A中有m个元素,集合B中有n个元素,则从A到B的映射个数有nm个。
如:若,;问:到的映射有 个,到的映射有 个;到的函数有 个,若,则到的一一映射有 个。
函数的图象与直线交点的个数为 个。
8. 函数的三要素是什么?如何比较两个函数是否相同?
(定义域、对应法则、值域)
相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)
9. 求函数的定义域有哪些常见类型?

函数定义域求法:
分式中的分母不为零;
偶次方根下的数(或式)大于或等于零;
指数式的底数大于零且不等于一;
对数式的底数大于零且不等于一,真数大于零。
正切函数
余切函数
反三角函数的定义域
函数y=arcsinx的定义域是 [-1, 1] ,值域是,函数y=arccosx的定义域是 [-1, 1] ,值域是 [0, π] ,函数y=arctgx的定义域是 R ,值域是.,函数y=arcctgx的定义域是 R ,值域是 (0, π) .
当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。
10. 如何求复合函数的定义域?

义域是_____________。
复合函数定义域的求法:已知的定义域为,求的定义域,可由解出x的范围,即为的定义域。
例 若函数的定义域为,则的定义域为 。
分析:由函数的定义域为可知:;所以中有。
解:依题意知:
解之,得
∴的定义域为
11、函数值域的求法
1、直接观察法
对于一些比较简单的函数,其值域可通过观察得到。
例 求函数y=的值域
2、配方法
配方法是求二次函数值域最基本的方法之一。
例、求函数y=-2x+5,x[-1,2]的值域。
3、判别式法
对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面
下面,我把这一类型的详细写出来,希望大家能够看懂

4、反函数法
直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
例 求函数y=值域。

5、函数有界性法
直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三角函数的单调性。
例 求函数y=,,的值域。

6、函数单调性法
通常和导数结合,是最近高考考的较多的一个内容
例求函数y=(2≤x≤10)的值域

7、换元法
通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角
函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发
挥作用。
例 求函数y=x+的值域。

8 数形结合法
其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这
类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。
例:已知点P(x.y)在圆x2+y2=1上,

例求函数y=+的值域。
解:原函数可化简得:y=∣x-2∣+∣x+8∣
上式可以看成数轴上点P(x)到定点A(2),B(-8)间的距离之和。
由上图可知:当点P在线段AB上时,
y=∣x-2∣+∣x+8∣=∣AB∣=10
当点P在线段AB的延长线或反向延长线上时,
y=∣x-2∣+∣x+8∣>∣AB∣=10
故所求函数的值域为:[10,+∞)
例求函数y=+ 的值域
解:原函数可变形为:y=+

上式可看成x轴上的点P(x,0)到两定点A(3,2),B(-2,-1)的距离之和,
由图可知当点P为线段与x轴的交点时, y=∣AB∣==,
故所求函数的值域为[,+∞)。
注:求两距离之和时,要将函数
9 、不等式法
利用基本不等式a+b≥2,a+b+c≥3(a,b,c∈),求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。
例:
倒数法
有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况
例 求函数y=的值域

多种方法综合运用
总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。

12. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?
切记:做题,特别是做大题时, 一定要注意附加条件,如定义域、单位等东西要记得协商,不要犯我当年的错误,与到手的满分失之交臂

13. 反函数存在的条件是什么?
(一一对应函数)
求反函数的步骤掌握了吗?
(①反解x;②互换x、y;③注明定义域)

在更多时候,反函数的求法只是在选择题中出现,这就为我们这些喜欢偷懒的人提供了大方便。请看这个例题:
(2004.全国理)函数的反函数是( B )
A.y=x2-2x+2(x<1) B.y=x2-2x+2(x≥1)
C.y=x2-2x (x<1) D.y=x2-2x (x≥1)
当然,心情好的同学,可以自己慢慢的计算,我想, 一番心血之后,如果不出现计算问题的话,答案还是可以做出来的。可惜,这个不合我胃口,因为我一向懒散惯了,不习惯计算。下面请看一下我的思路:
原函数定义域为 x〉=1,那反函数值域也为y>=1. 排除选项C,D.现在看值域。原函数至于为y>=1,则反函数定义域为x>=1, 答案为B.
我题目已经做完了, 好像没有动笔(除非你拿来写*书)。思路能不能明白呢?
14. 反函数的性质有哪些?
反函数性质:
反函数的定义域是原函数的值域 (可扩展为反函数中的x对应原函数中的y)
反函数的值域是原函数的定义域(可扩展为反函数中的y对应原函数中的x)
反函数的图像和原函数关于直线=x对称(难怪点(x,y)和点(y,x)关于直线y=x对称
①互为反函数的图象关于直线y=x对称;
②保存了原来函数的单调性、奇函数性;

由反函数的性质,可以快速的解出很多比较麻烦的题目,如
(04. 上海春季高考)已知函数,则方程的解__________.
15 . 如何用定义证明函数的单调性?
(取值、作差、判正负)
判断函数单调性的方法有三种:(1)定义法:
根据定义,设任意得x1,x2,找出f(x1),f(x2)之间的大小关系
可以变形为求的正负号或者与1的关系
(2)参照图象:①若函数f(x)的图象关于点(a,b)对称,函数f(x)在关于点(a,0)的对称区间具有相同的单调性; (特例:奇函数)②若函数f(x)的图象关于直线x=a对称,则函数f(x)在关于点(a,0)的对称区间里具有相反的单调性。(特例:偶函数)(3)利用单调函数的性质:①函数f(x)与f(x)+c(c是常数)是同向变化的②函数f(x)与cf(x)(c是常数),当c>0时,它们是同向变化的;当c<0时,它们是反向变化的。③如果函数f1(x),f2(x)同向变化,则函数f1(x)+f2(x)和它们同向变化;(函数相加)④如果正值函数f1(x),f2(x)同向变化,则函数f1(x)f2(x)和它们同向变化;如果负值函数f1(2)与f2(x)同向变化,则函数f1(x)f2(x)和它们反向变化;(函数相乘)⑤函数f(x)与在f(x)的同号区间里反向变化。⑥若函数u=φ(x),x[α,β]与函数y=F(u),u∈[φ(α),φ(β)]或u∈[φ(β),φ(α)]同向变化,则在[α,β]上复合函数y=F[φ(x)]是递增的;若函数u=φ(x),x[α,β]与函数y=F(u),u∈[φ(α),φ(β)]或u∈[φ(β),φ(α)]反向变化,则在[α,β]上复合函数y=F[φ(x)]是递减的。(同增异减)⑦若函数y=f(x)是严格单调的,则其反函数x=f-1(y)也是严格单调的,而且,它们的增减性相同。
f(g) g(x) f[g(x)] f(x)+g(x) f(x)*g(x) 都是正数
增 增 增 增 增
增 减 减 / /
减 增 减 / /
减 减 增 减 减

∴……)

16. 如何利用导数判断函数的单调性?

值是( )
A. 0 B. 1 C. 2 D. 3

∴a的最大值为3)
17. 函数f(x)具有奇偶性的必要(非充分)条件是什么?
(f(x)定义域关于原点对称)

注意如下结论:
(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

判断函数奇偶性的方法
定义域法
一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函数.
奇偶函数定义法
在给定函数的定义域关于原点对称的前提下,计算,然后根据函数的奇偶性的定义判断其奇偶性.

复合函数奇偶性

f(g) g(x) f[g(x)] f(x)+g(x) f(x)*g(x)
奇 奇 奇 奇 偶
奇 偶 偶 非奇非偶 奇
偶 奇 偶 非奇非偶 奇
偶 偶 偶 偶 偶

18. 你熟悉周期函数的定义吗?

函数,T是一个周期。)

我们在做题的时候,经常会遇到这样的情况:告诉你f(x)+f(x+t)=0,我们要马上反应过来,这时说这个函数周期2t. 推导:,
同时可能也会遇到这种样子:f(x)=f(2a-x),或者说f(a-x)=f(a+x).其实这都是说同样一个意思:函数f(x)关于直线对称, 对称轴可以由括号内的2个数字相加再除以2得到。比如,f(x)=f(2a-x),或者说f(a-x)=f(a+x)就都表示函数关于直线x=a对称。

如:

19. 你掌握常用的图象变换了吗?
联想点(x,y),(-x,y)
联想点(x,y),(x,-y)
联想点(x,y),(-x,-y)
联想点(x,y),(y,x)
联想点(x,y),(2a-x,y)
联想点(x,y),(2a-x,0)

(这是书上的方法,虽然我从来不用, 但可能大家接触最多,我还是写出来吧。对于这种题目,其实根本不用这么麻烦。你要判断函数y-b=f(x+a)怎么由y=f(x)得到,可以直接令y-b=0,x+a=0,画出点的坐标。 看点和原点的关系,就可以很直观的看出函数平移的轨迹了。)
注意如下“翻折”变换:

19. 你熟练掌握常用函数的图象和性质了吗?

(k为斜率,b为直线与y轴的交点)

的双曲线。



应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程

②求闭区间[m,n]上的最值。

③求区间定(动),对称轴动(定)的最值问题。
④一元二次方程根的分布问题。



由图象记性质! (注意底数的限定!)

利用它的单调性求最值与利用均值不等式求最值的区别是什么?(均值不等式一定要注意等号成立的条件)

20. 你在基本运算上常出现错误吗?

21. 如何解抽象函数问题?
(赋值法、结构变换法)

(对于这种抽象函数的题目,其实简单得都可以直接用死记了
代y=x,
令x=0或1来求出f(0)或f(1)
求奇偶性,令y=—x;求单调性:令x+y=x1

几类常见的抽象函数
正比例函数型的抽象函数
f(x)=kx(k≠0)---------------f(x±y)=f(x)±f(y)
幂函数型的抽象函数
f(x)=xa----------------f(xy)= f(x)f(y);f()=
指数函数型的抽象函数
f(x)=ax------------------- f(x+y)=f(x)f(y);f(x-y)=
对数函数型的抽象函数
f(x)=logax(a>0且a≠1)-----f(x·y)=f(x)+f(y);f()= f(x)-f(y)
三角函数型的抽象函数

f(x)=tgx-------------------------- f(x+y)=
f(x)=cotx------------------------ f(x+y)=

例1已知函数f(x)对任意实数x、y均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)= -2求f(x)在区间[-2,1]上的值域.
分析:先证明函数f(x)在R上是增函数(注意到f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1));再根据区间求其值域.

例2已知函数f(x)对任意实数x、y均有f(x+y)+2=f(x)+f(y),且当x>0时,f(x)>2,f(3)= 5,求不等式 f(a2-2a-2)<3的解.
分析:先证明函数f(x)在R上是增函数(仿例1);再求出f(1)=3;最后脱去函数符号.

例3已知函数f(x)对任意实数x、y都有f(xy)=f(x)f(y),且f(-1)=1,f(27)=9,当0≤x<1时,f(x)∈[0,1].
判断f(x)的奇偶性;
判断f(x)在[0,+∞]上的单调性,并给出证明;
若a≥0且f(a+1)≤,求a的取值范围.
分析:(1)令y=-1;
(2)利用f(x1)=f(·x2)=f()f(x2);
(3)0≤a≤2.

例4设函数f(x)的定义域是(-∞,+∞),满足条件:存在x1≠x2,使得f(x1)≠f(x2);对任何x和y,f(x+y)=f(x)f(y)成立.求:
f(0);
对任意值x,判断f(x)值的符号.
分析:(1)令x= y=0;(2)令y=x≠0.

例5是否存在函数f(x),使下列三个条件:①f(x)>0,x∈N;②f(a+b)= f(a)f(b),a、b∈N;③f(2)=4.同时成立?若存在,求出f(x)的解析式,若不存在,说明理由.
分析:先猜出f(x)=2x;再用数学归纳法证明.

例6设f(x)是定义在(0,+∞)上的单调增函数,满足f(x·y)=f(x)+f(y),f(3)=1,求:
f(1);
若f(x)+f(x-8)≤2,求x的取值范围.
分析:(1)利用3=1×3;
(2)利用函数的单调性和已知关系式.

例7设函数y= f(x)的反函数是y=g(x).如果f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g(b)是否正确,试说明理由.
分析:设f(a)=m,f(b)=n,则g(m)=a,g(n)=b,
进而m+n=f(a)+f(b)= f(ab)=f [g(m)g(n)]….
例8已知函数f(x)的定义域关于原点对称,且满足以下三个条件:
x1、x2是定义域中的数时,有f(x1-x2)=;
f(a)= -1(a>0,a是定义域中的一个数);
当0<x<2a时,f(x)<0.
试问:
f(x)的奇偶性如何?说明理由;
在(0,4a)上,f(x)的单调性如何?说明理由.
分析:(1)利用f [-(x1-x2)]= -f [(x1-x2)],判定f(x)是奇函数;
先证明f(x)在(0,2a)上是增函数,再证明其在(2a,4a)上也是增函数.
对于抽象函数的解答题,虽然不可用特殊模型代替求解,但可用特殊模型理解题意.有些抽象函数问题,对应的特殊模型不是我们熟悉的基本初等函数.因此,针对不同的函数要进行适当变通,去寻求特殊模型,从而更好地解决抽象函数问题.
例9已知函数f(x)(x≠0)满足f(xy)=f(x)+f(y),
求证:f(1)=f(-1)=0;
求证:f(x)为偶函数;
若f(x)在(0,+∞)上是增函数,解不等式f(x)+f(x-)≤0.
分析:函数模型为:f(x)=loga|x|(a>0)
先令x=y=1,再令x=y= -1;
令y= -1;
由f(x)为偶函数,则f(x)=f(|x|).

例10已知函数f(x)对一切实数x、y满足f(0)≠0,f(x+y)=f(x)·f(y),且当x<0时,f(x)>1,求证:
当x>0时,0<f(x)<1;
f(x)在x∈R上是减函数.
分析:(1)先令x=y=0得f(0)=1,再令y=-x;
受指数函数单调性的启发:
由f(x+y)=f(x)f(y)可得f(x-y)=,
进而由x1<x2,有=f(x1-x2)>1.
练习题:
1.已知:f(x+y)=f(x)+f(y)对任意实数x、y都成立,则( )
(A)f(0)=0 (B)f(0)=1
(C)f(0)=0或1 (D)以上都不对
2. 若对任意实数x、y总有f(xy)=f(x)+f(y),则下列各式中错误的是( )
(A)f(1)=0 (B)f()= f(x)
(C)f()= f(x)-f(y) (D)f(xn)=nf(x)(n∈N)
3.已知函数f(x)对一切实数x、y满足:f(0)≠0,f(x+y)=f(x)f(y),且当x<0时,f(x)>1,则当x>0时,f(x)的取值范围是( )
(A)(1,+∞) (B)(-∞,1)
(C)(0,1) (D)(-1,+∞)
4.函数f(x)定义域关于原点对称,且对定义域内不同的x1、x2都有
f(x1-x2)=,则f(x)为( )
(A)奇函数非偶函数 (B)偶函数非奇函数
(C)既是奇函数又是偶函数 (D)非奇非偶函数
5.已知不恒为零的函数f(x)对任意实数x、y满足f(x+y)+f(x-y)=2[f(x)+f(y)],则函数f(x)是( )
(A)奇函数非偶函数 (B)偶函数非奇函数
(C)既是奇函数又是偶函数 (D)非奇非偶函数
参考答案:
1.A 2.B 3 .C 4.A 5.B
23. 你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?
(和三角形的面积公式很相似, 可以比较记忆.要知道圆锥展开图面积的求法)

❻ 初中数学函数知识点

1.常量和变量
在某变化过程中可以取不同数值的量,叫做变量.在某变化过程中保持同一数值的量或数,叫常量或常数.
2.函数
设在一个变化过程中有两个变量x与y,如果对于x在某一范围的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.
3.自变量的取值范围
(1)整式:自变量取一切实数.
(2)分式:分母不为零.
(3)偶次方根:被开方数为非负数.
(4)零指数与负整数指数幂:底数不为零.
4.函数值
对于自变量在取值范围内的一个确定的值,如当x=a时,函数有唯一确定的对应值,这个对应值,叫做x=a时的函数值.
5.函数的表示法
(1)解析法;(2)列表法;(3)图象法.
6.函数的图象
把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在平面直角坐标系内描出一个点,所有这些点的集合,叫做这个函数的图象.
由函数解析式画函数图象的步骤:
(1)写出函数解析式及自变量的取值范围;
(2)列表:列表给出自变量与函数的一些对应值;
(3)描点:以表中对应值为坐标,在坐标平面内描出相应的点;
(4)连线:用平滑曲线,按照自变量由小到大的顺序,把所描各点连接起来.
7.一次函数
(1)一次函数
如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.
特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数.
(2)一次函数的图象
一次函数y=kx+b的图象是一条经过(0,b)点和 点的直线.
特别地,正比例函数图象是一条经过原点的直线.
需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数y=kx+b(k≠0)的图象”,因为还有直线y=m(此时k=0)和直线x=n(此时k不存在),它们不是一次函数图象.
(3)一次函数的性质
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
直线y=kx+b与y轴的交点坐标为(0,b),与x轴的交点坐标为 .
(4)用函数观点看方程(组)与不等式
①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直线y=kx+b,确定它与x轴交点的横坐标.
②二元一次方程组 对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标.
③任何一元一次不等式都可以转化ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围.
8.反比例函数
(1)反比例函数
如果 (k是常数,k≠0),那么y叫做x的反比例函数.
(2)反比例函数的图象
反比例函数的图象是双曲线.
(3)反比例函数的性质
①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小.
②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大.
③反比例函数图象关于直线y=±x对称,关于原点对称.
(4)k的两种求法
①若点(x0,y0)在双曲线 上,则k=x0y0.
②k的几何意义:
若双曲线 上任一点A(x,y),AB⊥x轴于B,则S△AOB

(5)正比例函数和反比例函数的交点问题
若正比例函数y=k1x(k1≠0),反比例函数 ,则
当k1k2<0时,两函数图象无交点;
当k1k2>0时,两函数图象有两个交点,坐标分别为 由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.

1.二次函数
如果y=ax2+bx+c(a,b,c为常数,a≠0),那么y叫做x的二次函数.
几种特殊的二次函数:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h)2(a≠0).
2.二次函数的图象
二次函数y=ax2+bx+c的图象是对称轴平行于y轴的一条抛物线.
由y=ax2(a≠0)的图象,通过平移可得到y=a(x-h)2+k(a≠0)的图象.
3.二次函数的性质
二次函数y=ax2+bx+c的性质对应在它的图象上,有如下性质:
(1)抛物线y=ax2+bx+c的顶点是 ,对称轴是直线 ,顶点必在对称轴上;
(2)若a>0,抛物线y=ax2+bx+c的开口向上,因此,对于抛物线上的任意一点(x,y),当x< 时,y随x的增大而减小;当x> 时,y随x的增大而增大;当x= ,y有最小值 ;
若a<0,抛物线y=ax2+bx+c的开口向下,因此,对于抛物线上的任意一点(x,y),当x< ,y随x的增大而增大;当 时,y随x的增大而减小;当x= 时,y有最大值 ;
(3)抛物线y=ax2+bx+c与y轴的交点为(0,c);
(4)在二次函数y=ax2+bx+c中,令y=0可得到抛物线y=ax2+bx+c与x轴交点的情况:
当=b2-4ac>0,抛物线y=ax2+bx+c与x轴有两个不同的公共点,它们的坐标分别是 和 ,这两点的距离为 ;当=0时,抛物线y=ax2+bx+c与x轴只有一个公共点,即为此抛物线的顶点 ;当<0时,抛物线y=ax2+bx+c与x轴没有公共点.
4.抛物线的平移
抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.把抛物线y=ax2向上(下)、向左(右)平移,可以得到抛物线y=a(x-h)2+k.平移的方向、距离要根据h、k的值来决定.

初中数学知识点归纳(口诀)——函数
正比例函数的鉴别
判断正比例函数,检验当分两步走。
一量表示另一量, 有没有。
若有再去看取值,全体实数都需要。
区分正比例函数,衡量可分两步走。
一量表示另一量, 是与否。
若有还要看取值,全体实数都要有。
正比例函数的图象与性质
正比函数图直线,经过 和原点。
K正一三负二四,变化趋势记心间。
K正左低右边高,同大同小向爬山。
K负左高右边低,一大另小下山峦。
一次函数
一次函数图直线,经过 点。
K正左低右边高,越走越高向爬山。
K负左高右边低,越来越低很明显。
K称斜率b截距,截距为零变正函。
反比例函数
反比函数双曲线,经过 点。
K正一三负二四,两轴是它渐近线。
K正左高右边低,一三象限滑下山。
K负左低右边高,二四象限如爬山。
二次函数
二次方程零换y,二次函数便出现。
全体实数定义域,图像叫做抛物线。
抛物线有对称轴,两边单调正相反。
A定开口及大小,线轴交点叫顶点。
顶点非高即最低。上低下高很显眼。
如果要画抛物线,平移也可去描点,
提取配方定顶点,两条途径再挑选。
列表描点后连线,平移规律记心间。
左加右减括号内,号外上加下要减。
二次方程零换y,就得到二次函数。
图像叫做抛物线,定义域全体实数。
A定开口及大小,开口向上是正数。
绝对值大开口小,开口向下A负数。
抛物线有对称轴,增减特性可看图。
线轴交点叫顶点,顶点纵标最值出。
如果要画抛物线,描点平移两条路。
提取配方定顶点,平移描点皆成图。
列表描点后连线,三点大致定全图。
若要平移也不难,先画基础抛物线,
顶点移到新位置,开口大小随基础。
【注】基础抛物线

❼ 高中数学函数知识点归纳有哪些

高中数学函数知识点如下:

1、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

2、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数。

3、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],该式的特点是:右端为一个奇函数和一个偶函数的和。

4、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)。

5、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。

❽ 函数的概念与性质知识点

函数(function)在数学中为两不为空集的集合间的一种对应关系:输入值集合中的每项元素皆能对应唯一一项输出值集合中的元素。 其定义通常分为传统定义和近代定义,前者从运动变化的观点出发,而后者从集合、映射的观点出发。其近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示。函数概念含有三个要素:定义域A、值域C和对应法则f。

函数的特性
有界性
设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。

单调性
设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1 f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。

奇偶性
设为一个实变量实值函数,若有f(-x)= - f(x),则f(x)为奇函数。

几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变。

奇函数的例子有x、sin(x)、sinh(x)和erf(x)。

设f(x)为一实变量实值函数,若有,则f(x)为偶函数。

几何上,一个偶函数关于y轴对称,亦即其图在对y轴映射后不会改变。

偶函数的例子有|x|、x2、cos(x)和cosh(x)。

偶函数不可能是个双射映射。

周期性
设函数f(x)的定义域为D。如果存在一个正数T,使得对于任一有,且f(x+T)=f(x)恒成立,则称f(x)为周期函数,T称为f(x)的周期,通常我们说周期函数的周期是指最小正周期。周期函数

的定义域 D 为至少一边的无界区间,若D为有界的,则该函数不具周期性。并非每个周期函数都有最小正周期,例如狄利克雷函数。

周期函数有以下性质:

(1)若T(T≠0)是f(x)的周期,则-T也是f(x)的周期。

(2)若T(T≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。

(3)若T1与T2都是f(x)的周期,则也是f(x)的周期。

(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。

(5)T*是f(x)的最小正周期,且T1、T2分别是f(x)的两个周期,则T1/T2∈Q(Q是有理数集)

(6)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。

(7)周期函数f(x)的定义域M必定是双方无界的集合。

连续性
在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。

设f是一个从实数集的子集射到 的函数:f在中的某个点c处是连续的当且仅当以下的两个条件满足:

f在点c上有定义。c是其中的一个聚点,并且无论自变量x在中以什么方式接近c,f(x) 的极限都存在且等于f(c)。我们称函数到处连续或处处连续,或者简单的连续,如果它在其定义域中的任意点处都连续。更一般地,我们说一个函数在它定义域的子集上是连续的当它在这个子集的每一点处都连续。

不用极限的概念,也可以用下面所谓的方法来定义实值函数的连续性。

仍然考虑函数。假设c是f的定义域中的元素。函数f被称为是在c点连续当且仅当以下条件成立:

对于任意的正实数,存在一个正实数δ>0 使得对于任意定义域中的δ,只要x满足c -δ<x<c + δ,就有成立。

凹凸性
设函数在上连续。如果对于上的两点,恒有



那么称第一个不等式中的是区间上的凸函数;称第二个不等式中的为严格凸函数。

同理如果恒有



那么称第一个不等式中的是区间上的凹函数;称第二个不等式中的为严格凹函数。

复合函数
设函数的定义域为,函数在D上有定义(D是构成复合函数的定义域,它可以是定义域的一个非空子集),且,则函数称为由函数和函数构成的复合函数,它的定义域为D,变量称为中间变量。

并不是任何两个函数都可以复合成一个复合函数,若D为空集,则和函数不能复合。

反函数
一般地,设函数,值域是W,对于每一个属于W的y,有唯一的x属于D,使得f(x)=y,这时变量x也是变量y的函数,称为y=f(x)的反函数,记作。而习惯上y=f(x)的反函数记为。

习惯上只有一一对应的函数才有反函数。而若函数是定义在其定义域D上的单调增加或单调减少函数,则其反函数在其定义域W上单调增加或减少。原函数与反函数之间关于y=x对称。

分段函数
在自变量的不同变化范围内,对应法则用不同解析式子来表示的一个函数,称为分段函数。分段函数的定义域是各段定义域的并集。

❾ 初二数学一次函数知识点归纳是什么

1、函数概念。

在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说x是自变量,y是x的函数。

2、一次函数和正比例函数的概念。

若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数。

说明:

(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定。

(2)一次函数y=kx+b(k,b为常数,b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数。

(3)当b=0,k≠0时,y=b仍是一次函数。

(4)当b=0,k=0时,它不是一次函数。

❿ 高等数学函数的知识点

主要的高等数学函数知识,涉及极限的主要有以下几个方面:

  • 可涉及极限计算的知识点有,连续性及间断点的分类(分段函数分段点的连续问题),可导(导数是由函数极限来定义的),渐近线,二重极限(多元微分学)。其中,二重极限难度较大。

  • 极限以间接考查或与其他知识点综合出题的比重很大,也可以直接出题,所以考查形式有多种。如已知极限求参数,无穷小的概念与比较,求间断点类型和个数,求渐近线方程或条数,求某一点处的连续性和可导性,求多元函数在某一点处极限是否存在,求含有极限的函数表达式,已知极限求极限等。

  • 函数极限计算的常规方法主要分四类:等价无穷小替换,洛必达法则,泰勒公式,导数定义。 数列极限涉及的常规方法主要有四类:夹逼定理,定积分的定义(主要是针对部分和求极限),转化为函数极限(归结原则),单调有界准则。