当前位置:首页 » 基础知识 » 数学必修四知识网络结构
扩展阅读
带歌词怎么传到手机上 2025-01-22 23:00:00

数学必修四知识网络结构

发布时间: 2022-07-05 05:40:28

‘壹’ 高中数学必修四知识点总结

高中数学苏教版必修4:三角函数、三角恒等变换知识点总结

......(2)①与角终边相同的角的集合:与角终边在同一条直线上的角的集合: ;与角终边关于轴对称的角的集合: ...三角函数,三角......(2)①与角终边相同的角的集合:与角终边在同一条直线上的角的集合: ;与角终边关于轴对称的角的集合: ...

详见:http://hi..com/118e/blog/item/356d52dfecdd5efb38012fe3.html

‘贰’ 高中数学知识结构框架图

原发布者:吕明龙88
高中数学知识结构框图必修一:第一章集合第三章基本初等函数(Ⅰ)必修二:第一章立体几何初步第二章平面解析几何初步必修三:第一章算法初步第二章统计第三章概率必修四:第一章基本初等函数(II)第二章平面向量第三章三角恒等变换必修五:第一章解三角形第二章数列第三章不等式选修2-1:第一章常用逻辑用语第二章圆锥曲线与方程第三章空间向量与立体几何选修2-2:第一章导数及其应用第二章推理与证明第三章数系的扩充与复数选修2-3:第一章计数原理第二章概率第三章统计案例

‘叁’ 高中数学必修四知识点归纳有男

高中数学必修四知识点归纳有如下:

一、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

二、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

三、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

四、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

五、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

六、高中数学必修四知识点:指数函数和对数函数。

七、高中数学必修四知识点:数列。

八、高中数学必修四知识点:平面向量。

九、加法公式:P(A+B)=p(A)+P(B)-P(AB),如果A与B互不相容,则P(A+B)=P(A)+P(B)。

十、差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B)。

十一、乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B)。

十二、全概率公式:P(B)=∑P(Ai)P(B|Ai),它是由因求果。

‘肆’ 高中人教版数学必修四知识结构图

背公式就可以啦,数学一般不用什么结构图吧~然后就是多做题~

‘伍’ 高中数学必修四知识结构图(要细)

网络文库上搜索

‘陆’ 高中数学人教版必修四的知识点归纳!!!!

必修四主要介绍三角函数问题,主要要求掌握广义角,角度制,弧度制,三角基本关系,诱导公式,三角函数(图象和性质),和角、差角公式,倍角公式以及相公的积化和差,和差化积等公式;y=Asin(wx+a)的图象问题,正余弦定理等。主要是会运用知识解决实际问题,知识点都很容易理解。后面好象是向量问题。

‘柒’ 高中数学必修四各章节的思维导图

我是学物理竞赛的 ,很多人都问我这样的问题。。。。其实,对于高中来说 题没什么难的,就是看平常学的怎么样了。。。

真正理解透了。。学会了,还要什么笔记本、纠错本。。。。等等一些一些的东西啊 根本不需要。我一本都没有课本至今连名字都没写。。。。。。。好了 言归正传

对于物理这东西,当然好的数学基础 是必须的。。。比如几何啦。。。三角恒等变换、以及对式子的处理、还有导数之类的 。。。当然对于高中物理来讲,数学应该不是大部分人的瓶颈。。。仅限于竞赛中

很多人都认为物理真的很难啊,就是套公式啊,多做题啊,题海战术啊, 。。。。好吧 我想说,这是完全错误的。 或者我可以这么说,公式神马的连记都不用记,用的时候自己推出来, 做几道题训练训练就好了, 不用多做,我相信老师布置的作业就已经够了。

物理,悟理也,掌握好的思维方法很重要,我看你倒是对这些方法的名字记得倒是不错(什么整体法,又是什么正交分解法,我都没听说过)。。这个都无所谓,,,,真正的方法是自己 琢磨出来的,,,,

其实哲学性也很强啊, 比如一些大自然的规律问题。。。。。这个可以帮助你打开思路 ,有助于你的定性分析问题。。。。 为定量打下基础。。。。。留下你的QQ号 和你详聊把

追问:
我Q:399384934

‘捌’ 高一数学必修4的知识点的总结

同角三角函数基本关系

⒈同角三角函数的基本关系式
倒数关系:
tanα •cotα=1
sinα •cscα=1
cosα •secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

六角形记忆法:(参看图片或参考资料链接)
构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
(1)倒数关系:对角线上两个函数互为倒数;
(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。
(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式

⒉两角和与差的三角函数公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ
tan(α+β)=——————
1-tanα •tanβ

tanα-tanβ
tan(α-β)=——————
1+tanα •tanβ

倍角公式

⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

2tanα
tan2α=—————
1-tan^2(α)

半角公式

⒋半角的正弦、余弦和正切公式(降幂扩角公式)

1-cosα
sin^2(α/2)=—————
2

1+cosα
cos^2(α/2)=—————
2

1-cosα
tan^2(α/2)=—————
1+cosα

万能公式

⒌万能公式
2tan(α/2)
sinα=——————
1+tan^2(α/2)

1-tan^2(α/2)
cosα=——————
1+tan^2(α/2)

2tan(α/2)
tanα=——————
1-tan^2(α/2)

万能公式推导

附推导:
sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,
(因为cos^2(α)+sin^2(α)=1)
再把*分式上下同除cos^2(α),可得sin2α=tan2α/(1+tan^2(α))
然后用α/2代替α即可。
同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。

三倍角公式

⒍三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα

3tanα-tan^3(α)
tan3α=——————
1-3tan^2(α)

三倍角公式推导

附推导:
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^2(α)
=3sinα-4sin^3(α)

cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα

sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα

三倍角公式联想记忆

记忆方法:谐音、联想
正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))
余弦三倍角:4元3角 减 3元(减完之后还有“余”)
☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

和差化积公式

⒎三角函数的和差化积公式

α+β α-β
sinα+sinβ=2sin—----•cos—---
2 2

α+β α-β
sinα-sinβ=2cos—----•sin—----
2 2

α+β α-β
cosα+cosβ=2cos—-----•cos—-----
2 2

α+β α-β
cosα-cosβ=-2sin—-----•sin—-----
2 2

积化和差公式

⒏三角函数的积化和差公式
sinα •cosβ=0.5[sin(α+β)+sin(α-β)]
cosα •sinβ=0.5[sin(α+β)-sin(α-β)]
cosα •cosβ=0.5[cos(α+β)+cos(α-β)]
sinα •sinβ=- 0.5[cos(α+β)-cos(α-β)]