‘壹’ 学习高等数学需要具备哪些基础知识
你只是初中毕业,没读过高中,那你学习高等数学会很吃力,理解不了,建议你还是先学习高中代数,几何,函数等,先打好初高中数学基础再进一步学习高等数学。
‘贰’ 零基础学高等数学需要哪些基础知识
鄙人刚刚接触高数,这个是很大的一门学科领域非常广的一级学科...数学分析、高等代数、解析几何、概率论与数理统计这个是基本是入门主线任务,支线任务有复变函数、常微分、运筹、最优化,数学模型。鄙人也不打算继续说下去了仅供你了解一下,其次还有很多应用数学领域很多东西...高数挑你能用到的学,学不是目的不然就学傻了。(以上是本科高等数学内容,参考的数学系教学科目)高数具体的鄙人也还在懵逼阶段,怎么学鄙人只能说不知道。
‘叁’ 学习高等数学前需要哪些高中或者初中知识哪些是需要知道个公式哪些是需要深入熟练的
集合一定要打好基础。高数应该包括微积分和解析几何,所以平面解析几何也必须基础扎实。
还有实数、函数等。因为数学知识的系统性,所以也不能说哪一部分用不上,不过重要的几部分你只要把概念弄懂弄通,就没问题。
‘肆’ 高数必备基础知识
高数必备基础知识,主要包括各种知识点,现在总结如下:
1、正确理解函数的概念,了解函数的奇偶性、单调性、周期性和有界性,理解复合函数、反函数及隐函数的概念。2、理解极限的概念,理解函数左、右极限的概念以及极限存在与左右极限之间的关系。理解无穷小、无穷大以及无穷小阶的概念,会用等价无穷小求极限,掌握无穷小的比较方法。
3、理解函数连续性的概念,会判别函数间断点的类型。了解初等函数的连续性和闭区间上连续函数的性质(最大值、最小值定理和介值定理),并会应用这些性质。
4、掌握利用两个重要的极限:lim(sinx/x)=1,lim(1+1/x)=e,理解连续函数的概念及闭区间上连续函数的性质。5、理解分段函数、复合函数的概念,了解反函数和隐函数的概念。
一元函数微分学1、理解导数和微分的概念,导数的几何意义,会求平面曲线的切线方程,理解函数可导性与连续性之间的关系。
2、掌握导数的四则运算法则和一阶微分的形式不变性。了解高阶导数的概念,会求简单函数的n阶导数,分段函数的一阶、二阶导数。会求隐函数和由参数方程所确定的函数的一阶、二阶导数及反函数的导数。
3、理解并会用罗尔中值定理,拉格朗日中值定理,了解并会用柯西中值定理。
4、掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用。
5、理解函数极值的概念,掌握函数最大值和最小值的求法及简单应用,会用导数判断函数的凹凸性和拐点,会求函数图形水平、铅直和斜渐近线,会描绘简单函数的图形。
6、了解曲率和曲率半径的概念,会计算曲率和曲率半径及两曲线的交角。
7、掌握用罗必塔法则求未定式极限的方法。一元函数积分学
1、理解原函数和不定积分的概念,了解定积分的概念。
2、掌握不定积分的基本公式,不定积分和定积分的性质及定积分中值定理,掌握换元积分法和分部积分法。
3、会求有理函数、三角函数和简单无理函数的积分。
4、理解变上限积分定义的函数,会求它的导数,掌握牛顿莱布尼兹公式。
5、了解广义积分的概念并会计算广义积分。6、掌握用定积分计算一些几何量和物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力作功、引力、压力等。)
以上就是部分高数必备之术基础知识的难点要点,以及重要理解的地方,需要你认真学习才可以能掌握
‘伍’ 学高等数学需要那些知识呢
主要内容包括:极限、微积分、空间解析几何与线性代数、级数、常微分方程。
前提是数学基础一定要扎实,只要努力,高中也不晚,背的公式还是很多的。
‘陆’ 高等数学知识有哪些
大体分为一元微分学,一元积分学,多元微分学,多元积分学,再来个微分方程。
‘柒’ 学习高等数学前应该有哪些预备知识,让自身学起来更轻松
如果说你是一个理科生的,学习过的数学就会轻松很多,因为你高中的话已经学过了一些微积分这些简单的东西,你在大学学高等数学的时候会有一定的基础,如果说你是一个文科生,到大学之后学习高中数学需要提前的预习一些微积分的知识,这些东西老师突然讲的话你肯定是跟不上的,因为之前没有任何的基础老师上理科生的进度是跟你讲的,尤其是一些数学系或者计算机系,他们讲课的进度相对来说要快一些。
‘捌’ 高等数学之前要学什么数学
高等数学研究的是变量。
高等数学(也称为微积分,它是几门课程的总称)是理、工科院校一门重要的基础学科。作为一门科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性是数学最基本、最显着的特点--有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。严密的逻辑性是指在数学理论的归纳和整理中,无论是概念和表述,还是判断和推理,都要运用逻辑的规则,遵循思维的规律。所以说,数学也是一种思想方法,学习数学的过程就是思维训练的过程。人类社会的进步,与数学这门科学的广泛应用是分不开的。尤其是到了现代,电子计算机的出现和普及使得数学的应用领域更加拓宽,现代数学正成为科技发展的强大动力,同时也广泛和深入地渗透到了社会科学领域。因此,学好高等数学对我们来说相当重要。然而,很多学生对怎样才能学好这门课程感到困惑。要想学好高等数学,至少要做到以下四点:
首先,理解概念。数学中有很多概念。概念反映的是事物的本质,弄清楚了它是如何定义的、有什么性质,才能真正地理解一个概念。
其次,掌握定理。定理是一个正确的命题,分为条件和结论两部分。对于定理除了要掌握它的条件和结论以外,还要搞清它的适用范围,做到有的放矢。
第三,在弄懂例题的基础上作适量的习题。要特别提醒学习者的是,课本上的例题都是很典型的,有助于理解概念和掌握定理,要注意不同例题的特点和解法法在理解例题的基础上作适量的习题。作题时要善于总结---- 不仅总结方法,也要总结错误。这样,作完之后才会有所收获,才能举一反三。
第四,理清脉络。要对所学的知识有个整体的把握,及时总结知识体系,这样不仅可以加深对知识的理解,还会对进一步的学习有所帮助。
高等数学中包括微积分和立体解析几何,级数和常微分方程。其中尤以微积分的内容最为系统且在其他课程中有广泛的应用.微积分的理论是由牛顿和莱布尼茨完成的.(当然在他们之前就已有微积分的应用,但不够系统)无穷小和极限的概念微积分的基本概念的理解有很大难度。
高等数学分为几个部分为:
一、函数 极限 连续
二、一元函数微分学
三、一元函数积分学
四、向量代数与空间解析几何
五、多元函数微分学
六、多元函数积分学
七、无穷级数
八、常微分方程
高数主要包括
一、 函数与极限分为
常量与变量
函数
函数的简单性态
反函数
初等函数
数列的极限
函数的极限
无穷大量与无穷小量
无穷小量的比较
函数连续性
连续函数的性质及初等函数函数连续性
二、导数与微分
导数的概念
函数的和、差求导法则
函数的积、商求导法则
复合函数求导法则
反函数求导法则
高阶导数
隐函数及其求导法则
函数的微分
三、导数的应用
微分中值定理
未定式问题
函数单调性的判定法
函数的极值及其求法
函数的最大、最小值及其应用
曲线的凹向与拐点
四、不定积分
不定积分的概念及性质
求不定积分的方法
几种特殊函数的积分举例
五、定积分及其应用
定积分的概念
微积分的积分公式
定积分的换元法与分部积分法
广义积分
六、空间解析几何
空间直角坐标系
方向余弦与方向数
平面与空间直线
曲面与空间曲线
八、多元函数的微分学
多元函数概念
二元函数极限及其连续性
偏导数
全微分
多元复合函数的求导法
多元函数的极值
九、多元函数积分学
二重积分的概念及性质
二重积分的计算法
三重积分的概念及其计算法
十、常微分方程
微分方程的基本概念
可分离变量的微分方程及齐次方程
线性微分方程
可降阶的高阶方程
线性微分方程解的结构
二阶常系数齐次线性方程的解法
二阶常系数非齐次线性方程的解法
十一、无穷级数
导数的概念
在学习到数的概念之前,我们先来讨论一下物理学中变速直线运动的瞬时速度的问题。
注:导数也就是差商的极限左、右导数
前面我们有了左、右极限的概念,导数是差商的极限,因此我们可以给出左、右导数的概念。若极限
存在,我们就称它为函数y=f(x)在x=x0处的左导数。若极限
存在,我们就称它为函数y=f(x)在x=x0处的右导数。
注:函数y=f(x)在x0处的左右导数存在且相等是函数y=f(x)在x0处的可导的充分必要条件
‘玖’ 大学高等数学要掌握哪些基础知识啊
大学数学主要是由极限贯穿的,要对极限的思维建立一个比较强的概念。
主要掌握的基础知识是导数,包括偏导;然后是积分。
纵观大学数学上下册(同济5版)无非就是围绕导数,积分展开的。正确理解和运用导数和积分的基本概念和定理尤为重要~!