❶ 初一下学期数学知识点总结
由几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组
不等式组中所有不等式的解集的公共部分叫做这个不等式组的解集。求不等式组的解集的过程叫做解不等式组。
解不解不等式的诀窍
大于大于取大的(大大大);
例如:X>-1
X>2
不等式组的解集是X>2
小于小于取小的(小小小);
例如:X<-4
X<-6
不等式组的解集是X<-6 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
大于小于交叉取中间;
无公共部分分开无解了
❷ 七年级下册数学知识点归纳
第五章 平等线与相交线
1、同角或等角的余角相等,同角或等角的补角相等。
2、对顶角相等
3、判断两直线平行的条件:
1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。 3)同旁内角互补,两直线平行。 (4)如果两条直线都和第三条直线平行,那么这两面三刀条直线也互相平行。
4、平行线的特征:
(1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。 (3)同旁内角互补,两直线平行。
5、命题:
⑴命题的概念:
判断一件事情的语句,叫做命题。
⑵命题的组成
每个命题都是题设、结论两部分组成。题设是已知事项;结论是由已知事项推出的事项。命题常写成“如
果……,那么……”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。
6、平移
平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移,平移不改变物体的形状和大小。
(1) 把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
(2) 新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。连接各组对应点的线段平行且相等。
第六章 平面直角坐标系
1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)
2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。
3、在平面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。平面直角坐标系有两个坐标轴,其中横轴为X轴,取向右方向为正方向;纵轴为Y轴,取向上为正方向。坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点。X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般情况下,x轴和y轴取相同的单位长度。
3、特殊位置的点的坐标的特点:
(1).x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
(2).第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
(3).在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
4.点到轴及原点的距离
点到x轴的距离为|y|; 点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;
在平面直角坐标系中对称点的特点:
1.关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。
2.关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。
3关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。
各象限内和坐标轴上的点和坐标的规律:
第一象限:(+,+) 第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)
x轴正方向:(+,0)x轴负方向:(-,0)y轴正方向:(0,+)y轴负方向:(0,-)
x轴上的点纵坐标为0,y轴横坐标为0。
第七章 三角形
1、三角形任意两边之和大于第三边,确形任意两边之差小于第三边。
2、三角形三个内角的和等于180度。
3、直角三角形的两个锐角互余
4、三角形的三条角平分线交于一点,三条中线交于一点;三角形的三条高所在的直线交于一点。
5、直角三角形全等的条件:
斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。
(只要有任意两条边相等,这两个直角三角形就全等)。
6、三角形全等的条件:
(1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
(2)两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。
(3)两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。
(4)两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。
27、等腰三角形的特征:
(1) 有两条边相等的三角形叫做等腰三角形;
(2) 等腰三角形是轴对称图形;
(3) 等腰三角形顶角的平分线、底边上的中线、底边上的重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴。
(4)等腰三角形的两个底角相等。
(5)等腰三角形的底角只能是锐角
❸ 初一下数学知识点有哪些
1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。
2、在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。
3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。邻补角的性质:邻补角互补。
4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。
5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,其中一条叫做另一条的垂线。
6、平行公理:经过直线外一点有且只有一条直线与已知直线平行。平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
❹ 初一数学下册知识点
初一数学上册知识点汇总
(一)有理数及其运算复习
一、有理数的基础知识
1、三个重要的定义:
(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数.
2、有理数的分类:
(1)按定义分类:
(2)按性质符号分类:
3、数轴
数轴有三要素:原点、正方向、单位长度.画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴.在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数.
4、相反数
如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数.0的相反数是0,互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离相等.
5、绝对值
(1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离.
(2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a表示如下:
(3)两个负数比较大小,绝对值大的反而小.
二、有理数的运算
1、有理数的加法
(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数.
(2)有理数加法的运算律:
加法的交换律 :a+b=b+a;加法的结合律:( a+b ) +c = a + (b +c)
用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加.
2、有理数的减法
(1)有理数减法法则:减去一个数等于加上这个数的相反数.
(2)有理数减法常见的错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数.
(3)有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算;
3、有理数的乘法
(1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0.
(2)有理数乘法的运算律:交换律:ab=ba;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac.
(3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来.
4、有理数的除法
有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数.这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0.
5、有理数的乘法
(1)有理数的乘法的定义:求几个相同因数a的运算叫做乘方,乘方是一种运算,是几个相同的因数的特殊乘法运算,记做“ ”其中a叫做底数,表示相同的因数,n叫做指数,表示相同因数的个数,它所表示的意义是n个a相乘,不是n乘以a,乘方的结果叫做幂.
(2)正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数
6、有理数的混合运算
(1)进行有理数混合运算的关建是熟练掌握加、减、乘、除、乘方的运算法则、运算律及运算顺序.比较复杂的混合运算,一般可先根据题中的加减运算,把算式分成几段,计算时,先从每段的乘方开始,按顺序运算,有括号先算括号里的,同时要注意灵活运用运算律简化运算.
(2)进行有理数的混合运算时,应注意:一是要注意运算顺序,先算高一级的运算,再算低一级的运算;二是要注意观察,灵活运用运算律进行简便运算,以提高运算速度及运算能力.
(2)整式的加减复习
(3)一元一次方程复习
一、方程的有关概念
1、方程的概念:
(1)含有未知数的等式叫方程.
(2)在一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0,这样的方程叫一元一次方程.
2、等式的基本性质:
(1)等式两边同时加上(或减去)同一个代数式,所得结果仍是等式.若a=b,则a+c=b+c或a – c = b – c .
(2)等式两边同时乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.若a=b,则ac=bc或
(3)对称性:等式的左右两边交换位置,结果仍是等式.若a=b,则b=a.
(4)传递性:如果a=b,且b=c,那么a=c,这一性质叫等量代换.
二、解方程
1、移项的有关概念:
把方程中的某一项改变符号后,从方程的一边移到另一边,叫做移项.这个法则是根据等式的性质1推出来的,是解方程的依据.要明白移项就是根据解方程变形的需要,把某一项从方程的左边移到右边或从右边移到左边,移动的项一定要变号.
2、解一元一次方程的步骤:
(1)去分母 等式的性质2
注意拿这个最小公倍数乘遍方程的每一项,切记不可漏乘某一项,分母是小数的,要先利用分数的性质,把分母化为整数,若分子是代数式,则必加括号.
(2)去括号 去括号法则、乘法分配律
严格执行去括号的法则,若是数乘括号,切记不漏乘括号内的项,减号后去括号,括号内各项的符号一定要变号.
(3)移项 等式的性质1
越过“=”的叫移项,属移项者必变号;未移项的项不变号,注意不遗漏,移项时把含未知数的项移在左边,已知数移在右边,书写时,先写不移动的项,把移动过来的项改变符号写在后面
(4)合并同类项 合并同类项法则
注意在合并时,仅将系数加到了一起,而字母及其指数均不改变.
(5)系数化为1 等式的性质2
两边同除以未知数的系数,记住未知数的系数永远是分母(除数),切不可分子、分母颠倒.
(6)检验
二、列方程解应用题
1、列方程解应用题的一般步骤:
(1)将实际问题抽象成数学问题;
(2)分析问题中的已知量和未知量,找出等量关系;
(3)设未知数,列出方程;
(4)解方程;
(5)检验并作答.
2、一些实际问题中的规律和等量关系:
(1)日历上数字排列的规律是:横行每整行排列7个连续的数,竖列中,下面的数比上面的数大7.日历上的数字范围是在1到31之间,不能超出这个范围.
(2)几种常用的面积公式:
长方形面积公式:S=ab,a为长,b为宽,S为面积;正方形面积公式:S = a2,a为边长,S为面积;
梯形面积公式:S = ,a,b为上下底边长,h为梯形的高,S为梯形面积;
圆形的面积公式: ,r为圆的半径,S为圆的面积;
三角形面积公式: ,a为三角形的一边长,h为这一边上的高,S为三角形的面积.
(3)几种常用的周长公式:
长方形的周长:L=2(a+b),a,b为长方形的长和宽,L为周长.
正方形的周长:L=4a,a为正方形的边长,L为周长.
圆:L=2πr,r为半径,L为周长.
(4)柱体的体积等于底面积乘以高,当体积不变时,底面越大,高度就越低.所以等积变化的相等关系一般为:变形前的体积=变形后的体积.
(5)打折销售这类题型的等量关系是:利润=售价–成本.
(6)行程问题中关建的等量关系:路程=速度×时间,以及由此导出的其化关系.
(7)在一些复杂问题中,可以借助表格分析复杂问题中的数量关系,找出若干个较直接的等量关系,借此列出方程,列表可帮助我们分析各量之间的相互关系.
(8)在行程问题中,可将题目中的数字语言用“线段图”表达出来,分析问题中的数量关系,从而找出等量关系,列出方程.
(9)关于储蓄中的一些概念:
本金:顾客存入银行的钱;利息:银行给顾客的酬金;本息:本金与利息的和;期数:存入的时间;利率:每个期数内利息与本金的比;利息=本金×利率×期数;本息=本金+利息.
(4)图形初步认识总复习
(一)多姿多彩的图形
立体图形:棱柱、棱锥、圆柱、圆锥、球等.
1、几何图形
平面图形:三角形、四边形、圆等.
主(正)视图---------从正面看
2、几何体的三视图 侧(左、右)视图-----从左(右)边看
俯视图---------------从上面看
(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.
(2)能根据三视图描述基本几何体或实物原型.
3、立体图形的平面展开图
(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.
(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.
4、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形最基本的图形.
线:面和面相交的地方是线,分为直线和曲线.
面:包围着体的是面,分为平面和曲面.
体:几何体也简称体.
(2)点动成线,线动成面,面动成体.
(二)直线、射线、线段
1、基本概念
图形 直线 射线 线段
端点个数 无 一个 两个
表示法 直线a
直线AB(BA) 射线AB 线段a
线段AB(BA)
作法叙述 作直线AB;
作直线a 作射线AB 作线段a;
作线段AB;
连接AB
延长叙述 不能延长 反向延长射线AB 延长线段AB;
反向延长线段BA
2、直线的性质
经过两点有一条直线,并且只有一条直线.
简单地:两点确定一条直线.
3、画一条线段等于已知线段
(1)度量法
(2)用尺规作图法
4、线段的大小比较方法
(1)度量法
(2)叠合法
5、线段的中点(二等分点)、三等分点、四等分点等
定义:把一条线段平均分成两条相等线段的点.
图形:
A M B
符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.
6、线段的性质
两点的所有连线中,线段最短.简单地:两点之间,线段最短.
7、两点的距离
连接两点的线段长度叫做两点的距离.
8、点与直线的位置关系
(1)点在直线上 (2)点在直线外.
(三)角
1、角:由公共端点的两条射线所组成的图形叫做角.
2、角的表示法(四种):
3、角的度量单位及换算
4、角的分类
∠β 锐角 直角 钝角 平角 周角
范围 0<∠β<90° ∠β=90° 90°<∠β<180° ∠β=180° ∠β=360°
5、角的比较方法
(1)度量法
(2)叠合法
6、角的和、差、倍、分及其近似值
7、画一个角等于已知角
(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.
(2)借助量角器能画出给定度数的角.
(3)用尺规作图法.
8、角的平线线
定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.
图形:
符号:
9、互余、互补
(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.
(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.
(3)余(补)角的性质:等角的补(余)角相等.
10、方向角
(1)正方向
(2)北(南)偏东(西)方向
(3)东(西)北(南)方向
希望能帮助你!
❺ 请求七年级下册数学各章知识重点总结
第一章 有理数
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。
1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。
第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。
第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。
3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。
第四章 数据的收集与整理
收集、整理、描述和分析数据是数据处理的基本过程。
基本是这些,其他需要自己运用知识答题!(以上是七上的)七下:第一章:三角形的初步认识
主要性质:
(1) 三角形任何两边的和大于第三边。
(2) 三角形三个内角的和等于180°。三角形的一个外角等于的它不相邻的两个内角的和。
(3) 全等三角形的对应边相等,对应角相等。
(4) 有三边对应相等的两个三角形全等(简写成“边边边”或“SSS”);有一个角和夹这个角的两边对应相等的两个三角形全等(简写成“边角边”或“SAS”);有两个角和这两个角的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”);有两个角和其中一个角的对边对应相等的两个三角形全等(简写成“角角边”或“AAS”)
(5) 线段垂直平分线上的点到线段两端点的距离相等。角平分线上的点到角两边的距离相等。
第二章:图形和变换
主要性质
(1) 对称轴垂直平分连结两个对称点之间的线段,轴对称变换不改变图形的形状和大小。
(2) 平移变换不改变图形的形状、大小和方向,并且连接对应点的线段平行而且相等。
(3) 旋转变换不改变图形的大小和形状,并且对应点到旋转中心的距离都相等,对应点与旋转中心连线所成的角度都等于旋转的角度。
(4) 相似变换不改变图形中每一个角的大小;图形中的每条线段都扩大(或缩小)相同的倍数。
第三章:事件的可能性
(1)在一定条件下必然发生的事件叫做必然事件;在一定条件下必然不会发生的事件叫做不可能事件;在一定条件下,可能发生也可能不发生的的事件称为不确定事件(或随机事件)
(2)在数学上,事件发生的可能性的大小也称为事件发生的概率.必然事件发生的概率为1或100%,不可能事件发生的概率为0,若用P表示不确定事件发生的概率,则0<P<1
第四章:
含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程,使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。
由两个一次方程组成,且含有两个未知数的方程组,叫做二元一次方程组。同时满足二元一次方程组中各个方程的解,叫做二元一次方程组的解。
基本思路
二元一次方程 消元 一元一次方程
应用方程组解决实际问题的步骤
理解问题(审题,搞清已知和未知,分析数量关系)
制订计划(考虑如何根据等量关系设元,列出方程组)
执行计划(列出方程组并求解,得出答案)
回顾(检查和反思解题过秤,检验答案的正确性以及是否符合题意)
主要方法和技能
用代入法和加减法解二元一次方程组
应用二元一次方程组解决简单的实际问题
第五章
整数指数幂及其运算的基本法则
整式的乘法法则
单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式
单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。
多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加
整式的除法法则
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
第六章
1.分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变。即
其中M是不等于零的整式。
2.分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
3.同分母的分式相加减,把分子相加减,分母不变。
4.同分母不相同的几个分式,化成分母相同的分式,叫做通分。经过通分,异分母分式的加减就转化成同分母分式的加减。
5.解分式方程必须验根.把求得的根代入原方程,或代入原方程两边所乘的公分母,使分式为零的根,叫做增根,增根必须舍去。 七年级数学下期复习提纲:一、 概念知识1、 单项式:数字与字母的积,叫做单项式。2、 多项式:几个单项式的和,叫做多项式。3、 整式:单项式和多项式统称整式。4、 单项式的次数:单项式中所有字母的指数的和叫单项式的次数。5、 多项式的次数:多项式中次数最高的项的次数,就是这个多项式的次数。6、 余角:两个角的和为90度,这两个角叫做互为余角。7、 补角:两个角的和为180度,这两个角叫做互为补角。8、 对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。9、 同位角:在“三线八角”中,位置相同的角,就是同位角。10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。18、全等图形:两个能够重合的图形称为全等图形。19、变量:变化的数量,就叫变量。20、自变量:在变化的量中主动发生变化的,变叫自变量。21、因变量:随着自变量变化而被动发生变化的量,叫因变量。22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。23、对称轴:轴对称图形中对折的直线叫做对称轴。24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线)二、 计算能力(A) 整式的计算。1、 整式的加减去括号,合并同类项!2、 幂运算(七个公式)① 同底数幂相乘:底数不变,指数相加。 ②幂的乘方:底数不变,指数相乘。③积的乘方:等于每个因数乘方的积。 ④同指数幂相乘:指数不变,底数相乘。
❻ 七年级下册数学复习提纲
七年级数学下期复习提纲
一、 概念知识
1、 单项式:数字与字母的积,叫做单项式。
2、 多项式:几个单项式的和,叫做多项式。
3、 整式:单项式和多项式统称整式。
4、 单项式的次数:单项式中所有字母的指数的和叫单项式的次数。
5、 多项式的次数:多项式中次数最高的项的次数,就是这个多项式的次数。
6、 余角:两个角的和为90度,这两个角叫做互为余角。
7、 补角:两个角的和为180度,这两个角叫做互为补角。
8、 对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。
9、 同位角:在“三线八角”中,位置相同的角,就是同位角。
10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。
11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。
12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。
13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。
14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。
17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
18、全等图形:两个能够重合的图形称为全等图形。
19、变量:变化的数量,就叫变量。
20、自变量:在变化的量中主动发生变化的,变叫自变量。
21、因变量:随着自变量变化而被动发生变化的量,叫因变量。
22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。
23、对称轴:轴对称图形中对折的直线叫做对称轴。
24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线)
二、 计算能力
(A) 整式的计算。
1、 整式的加减
去括号,合并同类项!
2、 幂运算(七个公式)
① 同底数幂相乘:底数不变,指数相加。 ②幂的乘方:底数不变,指数相乘。
③积的乘方:等于每个因数乘方的积。 ④同指数幂相乘:指数不变,底数相乘。
⑤同底数幂相除:底数不变,指数相减。 ⑥零指数:任何非零数的0次方等于1。
⑦负指数:任何非零数的负指数等于它的正指数的倒数。
3、 乘法公式
① 平方差公式:平方差,平方差;两数和乘两数差。
② 完全平方公式:首平方,尾平方;首尾2倍在中央。
附:⑴三数和的完全平方:
⑵立方和:
⑶立方差:
4、 整式的乘法
① 单项式乘单项式:系数相乘,相同的字母相乘,不同的字母照写。
② 单项式乘多项式:用单项式去乘多项式的每一项,再把结果相加。
③多项式乘多项式:用第一个多项式的每一项去乘第二个多项式的每一项,再把结果相加。(握手原则)
5、 整式的除法
①单项式除以单项式:系数除以系数,相同的字母相除,只在被除式中出现的字母照写。
②多项式除以单项式:用多项式的每一项去除以单项式,再把结果相加。
(B) 角度的计算。
1、 利用三角形的内角定理、外角定理来计算
三角形的三个内角和为180度。一个外角等于和它不相邻的两个内角的和。
2、 利用平行线的关系角来计算。
3、 利用三角形的角平分线、高线来计算
(C) 面积的计算
1、 长方形的面积=长×高 或四个小三角形的面积之和(四个小三角形的面积相等)
2、 正方形的面积=边长×边长 或对角线相乘的一半。或四个全等小等腰直角三角形的面积和
3、 三角形面积=底×高÷2
4、 直角三角形的面积=两直角边的积的一半 或斜边与斜边上的高的积的一半
(D) 三角形线段的计算
① 用特殊位置(中线、中点、中垂线)来计算
② 用等腰三角形、全等三角形来计算
③ 用三角形的边之间的关系来计算
(E) 概率的计算
1、 一般算法: 2、 面积算法:
三、 图形与操作
1、 作三角形的高线、角平分线、中线。(基本作图,见书本143~146页)
2、 作轴对称图形。(找出关键点,用中垂线的方法来找对应点。)
3、 作三角形。
① 基本作图:⑴告诉三边⑵告诉两边夹角⑶告诉两角夹边(见书本169~171页)
② 综合作图:⑴告诉两边及第三边上的中线⑵告诉两边及第三边上的高线⑶告诉两边及夹角的角平分线
方法:2倍长关系线,构造全等三角形。
4、 生活中的最短路程作图。
(1) 在第三条直线上作到两点距离相等的点。(公路上建牛奶站,到两家人距离相等。作中垂线与公路相交。)
(2) 在第三条直线上作到两点距离之和最短的点。(公路上建牛奶站,到两家人距离和最短。作一家关于公路对称的对应点,对应点与另一家的连线与公路的交点。)
5、 平行的说明(证明)
以“三线八角”为基础
判定:同位角相等 性质: 同位角相等
内错角相等 两直线平行 两直线平行 内错角相等
同旁内角互补 同旁内角互补
6、 全等的说明(证明)
判定: 三边对应相等 (SSS) 性质:
两边夹一角对应相等 (SAS) 对应边相等
两角夹一边对应相等 (ASA) 两个三角形全等 全等三角形
两角及一角的对边对应相等 (AAS) 对应角相等
直角边和斜边对应相等 (HL)
四、 数据与统计
1、 科学记数法:数0法,左边有0,负指数;右边有0正指数。左边几个0,指数就是负几;右边几个0,指数先写成正几,然后指把a写成0~10之间的数,再修改指数。
1毫米= 10-3米 1微米=10 -6米 1纳米=10 -9米 1平方毫米=10 -6平方米 1立方微米=10 -18立方米
2、 变量的三种表示方法:
① 表格法:自变量在上,因变量在下
② 关系式法:自变量在前,因变量在后
③ 图像法:自变量是横轴,因变量是纵轴。
3、图像的认识:主要分析变量是增还是减。
五、 数学应用
1、 光线的反射
入射角等于反射角。入射角和反射角的余角也相等。如图:
∠1和∠2是入射角和反射角,所以∠1=∠2
∠3和∠4是∠1和∠2的余角,∠3=∠4
2、 用全等三角形测量距离
构造全等三角形,把不能直接测量的线段,变来可以测量!如测湖泊、高山、瓶子内部等。
3、 镜子的秘密:
(1) 镜子中的像和镜子外的事物成轴对称,对称轴是镜面,有时是竖直的,有时是水平的。
(2) 镜子里的时间+实际时间=12时
六、 典型题集
1、 几个非负数的和为0,这几个数都是0。已知:a2+b2-2a+6b+10=0,a2008+1/b=?
2、 换底:(x-y)2n (y-x)n (y-x)=? 已知3x-4y+5=0,则8x÷16y=?
3、 换指数:比较266和355的大小。 0.1252006×82007=
4、 完全平方的灵活运用:(1)求完全平方式中的一项或几项。已知:a+b=12,ab=30,可以求
(2) 隐藏一个条件:已知,求 (3)两个条件都隐藏。已知:x2-5x+1=0 求
(4)求其他高次方的和。
5、 平方差的运用。计算:(a-b+c)(a+b-c)
6、 已知三角形的两边长为a和b,求第三边上的中线长。已知三角两边分别是4和10,求第三条边上中线的范围。
A
4 ? 10 先求出BC的范围:6~14之间。然后BD为3~7之间。(左边三角形ABD中AD的范围为1~11之间)
B D C 再分析DC也为3~7之间。(右边三角形ACD中AD的范围为7~17之间)综合两边AD应为7~11之间。
7、 电话费的几种算法。(变量与关系式)
某电话有两种计算方法:(1)座机费每月25元,话费每分钟0.1元。(B)不交座机费。话费每分钟0.2元。
A、写出两种付费方法的总费用y(元)与时间x(分)的关系式。B、小明家本月要打300分钟电话,选哪种方式好,说明理由。C、打多少分钟时两种付费方式的钱一样多。
8、 近似数的精确范围。求近似数2.46的精确范围 在精确度下正负0.5 左边大于或等于,右边是小于。
9、 探索规律:(1)摆图形
注意分好类!把具有相同特点的部分分为一类来计算。如粘纸张中的首尾为一类,中间为一类,粘合部分为一类。
(2)粘纸张
❼ 七年级数学下册知识点总结
第一章 整式的运算
一. 整式
※1. 单项式
①由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。
②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.
③一个单项式中,所有字母的指数和叫做这个单项式的次数.
※2.多项式
①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.
②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.
※3.整式单项式和多项式统称为整式.
二. 整式的加减
¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.
¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.
三. 同底数幂的乘法
※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
②指数是1时,不要误以为没有指数;
③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);
⑤公式还可以逆用: (m、n均为正整数)
四.幂的乘方与积的乘方
※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.
※2. .
※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,
如将(-a)3化成-a3
※4.底数有时形式不同,但可以化成相同。
※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。
※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。
※7.幂的乘方与积乘方法则均可逆向运用。
五. 同底数幂的除法
※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).
※2. 在应用时需要注意以下几点:
①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.
②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.
③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如 ,
④运算要注意运算顺序.
六. 整式的乘法
※1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:
①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;
②相同字母相乘,运用同底数的乘法法则;
③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;
④单项式乘法法则对于三个以上的单项式相乘同样适用;
⑤单项式乘以单项式,结果仍是一个单项式。
※2.单项式与多项式相乘
单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
单项式与多项式相乘时要注意以下几点:
①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;
②运算时要注意积的符号,多项式的每一项都包括它前面的符号;
③在混合运算时,要注意运算顺序。
※3.多项式与多项式相乘
多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:
①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;
②多项式相乘的结果应注意合并同类项;
③对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到
七.平方差公式
¤1.平方差公式:两数和与这两数差的积,等于它们的平方差,
※即 。
¤其结构特征是:
①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;
②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。
八.完全平方公式
¤1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,
¤即 ;
¤口决:首平方,尾平方,2倍乘积在中央;
¤2.结构特征:
①公式左边是二项式的完全平方;
②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。
¤3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现 这样的错误。
九.整式的除法
¤1.单项式除法单项式
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;
¤2.多项式除以单项式
多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。
第二章 平行线与相交线
一.台球桌面上的角
※1.互为余角和互为补角的有关概念与性质
如果两个角的和为90°(或直角),那么这两个角互为余角;
如果两个角的和为180°(或平角),那么这两个角互为补角;
注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。
它们的主要性质:同角或等角的余角相等;
同角或等角的补角相等。
二.探索直线平行的条件
※两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:
①同位角相等,两直线平行;
②内错角相等,两直线平行;
③同旁内角互补,两直线平行。
三.平行线的特征
※平行线的特征即平行线的性质定理,共有三条:
①两直线平行,同位角相等;
②两直线平行,内错角相等;
③两直线平行,同旁内角互补。
四.用尺规作线段和角
※1.关于尺规作图
尺规作图是指只用圆规和没有刻度的直尺来作图。
※2.关于尺规的功能
直尺的功能是:在两点间连接一条线段;将线段向两方向延长。
圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。
第三章生活中的数据
※1.科学记数法:对任意一个正数可能写成a×10n的形式,其中1≤a<10,n是整数,这种记数的方法称为科学记数法。
¤2.利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。
¤3.统计工作包括:
①设定目标;②收集数据;③整理数据;④表达与描述数据;⑤分析结果。
第四章 概率
¤1.随机事件发生与不发生的可能性不总是各占一半,都为50%。
※2.现实生活中存在着大量的不确定事件,而概率正是研究不确定事件的一门学科。
※3.了解必然事件和不可能事件发生的概率。
必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1
※4.了解几何概率这类问题的计算方法
事件发生概率=
第五章 三角形
一.认识三角形
1.关于三角形的概念及其按角的分类
由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
这里要注意两点:
①组成三角形的三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;
②三条线段“首尾是顺次相接”,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的顶点。
三角形按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形。
2.关于三角形三条边的关系
根据公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边。
三角形三边关系的另一个性质:三角形任意两边之差小于第三边。
对于这两个性质,要全面理解,掌握其实质,应用时才不会出错。
设三角形三边的长分别为a、b、c则:
①一般地,对于三角形的某一条边a来说,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三条线段才能构成三角形;
②特殊地,如果已知线段a最大,只要满足b+c>a,那么a、b、c三条线段就能构成三角形;如果已知线段a最小,只要满足|b-c|<a,那么这三条线段就能构成三角形。
3.关于三角形的内角和
三角形三个内角的和为180°
①直角三角形的两个锐角互余;
②一个三角形中至多有一个直角或一个钝角;
③一个三角中至少有两个内角是锐角。
4.关于三角形的中线、高和中线
①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;
②任意一个三角形都有三条角平分线,三条中线和三条高;
③任意一个三角形的三条角平分线、三条中线都在三角形的内部。但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图3。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
二.图形的全等
¤能够完全重合的图形称为全等形。全等图形的形状和大小都相同。只是形状相同而大小不同,或者说只是满足面积相同但形状不同的两个图形都不是全等的图形。
四.全等三角形
¤1.关于全等三角形的概念
能够完全重合的两个三角形叫做全等三角形。互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角
所谓“完全重合”,就是各条边对应相等,各个角也对应相等。因此也可以这样说,各条边对应相等,各个角也对应相等的两个三角形叫做全等三角形。
※2.全等三角形的对应边相等,对应角相等。
¤3.全等三角形的性质经常用来证明两条线段相等和两个角相等。
五.探三角形全等的条件
※1.三边对应相等的两个三角形全等,简写为“边边边”或“SSS”
※2.有两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”
※3.两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”
※4.两角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”
六.作三角形
1.已知两个角及其夹边,求作三角形,是利用三角形全等条件“角边角”即(“ASA”)来作图的。
2.已知两条边及其夹角,求作三角形,是利用三角形全等条件“边角边”即(“SAS”)来作图的。
3.已知三条边,求作三角形,是利用三角形全等条件“边边边”即(“SSS”)来作图的。
八.探索直三角形全等的条件
※1.斜边和一条直角边对应相等的两个直角三角形全等。简称为“斜边、直角边”或“HL”。这只对直角三角形成立。
※2.直角三角形是三角形中的一类,它具有一般三角形的性质,因而也可用“SAS”、“ASA”、“AAS”、“SSS”来判定。
直角三角形的其他判定方法可以归纳如下:
①两条直角边对应相等的两个直角三角形全等;
②有一个锐角和一条边对应相等的两个直角三角形全等。
③三条边对应相等的两个直角三角形全等。
第七章 生活中的轴对称
※1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
※2.角平分线上的点到角两边距离相等。
※3.线段垂直平分线上的任意一点到线段两个端点的距离相等。
※4.角、线段和等腰三角形是轴对称图形。
※5.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
※6.轴对称图形上对应点所连的线段被对称轴垂直平分。
※7.轴对称图形上对应线段相等、对应角相等。