当前位置:首页 » 基础知识 » 高二数学合格性考试知识点
扩展阅读
儿童吃什么滑肠 2025-01-23 10:23:16
手机上怎么定格动漫 2025-01-23 10:13:11

高二数学合格性考试知识点

发布时间: 2022-07-03 08:56:34

❶ 高二数学知识点及公式是什么

高二数学知识点及公式是如下:

一、复合函数定义域

若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f的定义域是D={x|x∈A,且g(x)∈B}综合考虑各部分的x的取值范围,取他们的交集。

求函数的定义域主要应考虑以下几点:

⑴当为整式或奇次根式时,R的值域。

⑵当为偶次根式时,被开方数不小于0(即≥0)。

⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0。

⑷当为指数式时,对零指数幂或负整数指数幂,底不为0。

⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。

⑹分段函数的定义域是各段上自变量的取值集合的并集。

⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求。

⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。

⑼对数函数的真数必须大于零,底数大于零且不等于1。

二、复合函数常见题型

(ⅰ)已知f(x)定义域为A,求f的定义域:实质是已知g(x)的范围为A,以此求出x的范围。

(ⅱ)已知f定义域为B,求f(x)的定义域:实质是已知x的范围为B,以此求出g(x)的范围。

(ⅲ)已知f定义域为C,求f的定义域:实质是已知x的范围为C,以此先求出g(x)的范围(即f(x)的定义域);然后将其作为h(x)的范围,以此再求出x的范围。

❷ 高二上学期数学知识点梳理总结

单元知识总结

一、坐标法
1.点和坐标
建立了平面直角坐标系后,坐标平面上的点和一对有序实数(x,y)建立了一一对应的关系.
2.两点间的距离公式
设两点的坐标为P1(x1,y1),P2(x2,y2),则两点间的距离

特殊位置的两点间的距离,可用坐标差的绝对值表示:
(1)当x1=x2时(两点在y轴上或两点连线平行于y轴),则
|P1P2|=|y2-y1|
(2)当y1=y2时(两点在x轴上或两点连线平行于x轴),则
|P1P2|=|x2-x1|
3.线段的定比分点

(2)公式:分P1(x1,y2)和P2(x2,y2)连线所成的比为λ的分点坐标是

公式

二、直线
1.直线的倾斜角和斜率
(1)当直线和x轴相交时,把x轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角,叫做这条直线的倾斜角.
当直线和x轴平行线重合时,规定直线的倾斜角为0.
所以直线的倾斜角α∈[0,π).
(2)倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜

∴当k≥0时,α=arctank.(锐角)
当k<0时,α=π-arctank.(钝角)
(3)斜率公式:经过两点P1(x1,y1)、P2(x2,y2)的直线的斜率为

2.直线的方程
(1)点斜式 已知直线过点(x0,y0),斜率为k,则其方程为:y-y0=k(x-x0)
(2)斜截式 已知直线在y轴上的截距为b,斜率为k,则其方程为:y=kx+b
(3)两点式 已知直线过两点(x1,y1)和(x2,y2),则其方程为:

(4)截距式 已知直线在x,y轴上截距分别为a、b,则其方程为:

(5)参数式 已知直线过点P(x0,y0),它的一个方向向量是(a,b),

v(cosα,sinα)(α为倾斜角)时,则其参数式方程为

(6)一般式 Ax+By+C=0 (A、B不同时为0).
(7)特殊的直线方程
①垂直于x轴且截距为a的直线方程是x=a,y轴的方程是x=0.
②垂直于y轴且截距为b的直线方程是y=b,x轴的方程是y=0.
3.两条直线的位置关系
(1)平行:当直线l1和l2有斜截式方程时,k1=k2且b1≠b2.

(2)重合:当l1和l2有斜截式方程时,k1=k2且b1=b2,当l1和l2是

(3)相交:当l1,l2是斜截式方程时,k1≠k2

4.点P(x0,y0)与直线l:Ax+By+C=0的位置关系:

5.两条平行直线l1∶Ax+By+C1=0,l2∶Ax+By+C2=0间

6.直线系方程
具有某一共同属性的一类直线的集合称为直线系,它的方程的特点是除含坐标变量x,y以外,还含有特定的系数(也称参变量).
确定一条直线需要两个独立的条件,在求直线方程的过程中往往先根据一个条件写出所求直线所在的直线系方程,然后再根据另一个条件来确定其中的参变量.
(1)共点直线系方程:
经过两直线l1∶A1x+B1y+C1=0,l2∶A2x+B2y+C2=0的交点的直线系方程为:A1x+B1y+C1+λ(A2x+B2y+C2)=0,其中λ是待定的系数.
在这个方程中,无论λ取什么实数,都得不到A2x+B2y+C2=0,因此它不表示l2.当λ=0时,即得A1x+B1y+C1=0,此时表示l1.
(2)平行直线系方程:直线y=kx+b中当斜率k一定而b变动时,表示平行直线系方程.与直线Ax+By+C=0平行的直线系方程是Ax+By+λ=0(λ≠C),λ是参变量.
(3)垂直直线系方程:与直线Ax+By+C=0(A≠0,B≠0)垂直的直线系方程是:Bx-Ay+λ=0.
如果在求直线方程的问题中,有一个已知条件,另一个条件待定时,可选用直线系方程来求解.
7.简单的线性规划
(1)二元一次不等式Ax+By+C>0(或<0)表示直线Ax+By+C=0某一侧所有点组成的平面区域.
二元一次不等式组所表示的平面区域是各个不等式所表示的平面点集的交集,即各个不等式所表示的平面区域的公共部分.
(2)线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,称为线性规划问题,
例如,z=ax+by,其中x,y满足下列条件:

求z的最大值和最小值,这就是线性规划问题,不等式组(*)是一组对变量x、y的线性约束条件,z=ax+by叫做线性目标函数.满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域,使线性目标函数取得最大值和最小值的可行解叫做最优解.
三、曲线和方程
1.定义
在选定的直角坐标系下,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下关系:
(1)曲线C上的点的坐标都是方程f(x,y)=0的解(一点不杂);
(2)以方程f(x,y)=0的解为坐标的点都是曲线C上的点(一点不漏).
这时称方程f(x,y)=0为曲线C的方程;曲线C为方程f(x,y)=0的曲线(图形).
设P={具有某种性质(或适合某种条件)的点},Q={(x,y)|f(x,y)=0},若设点M的坐标为(x0,y0),则用集合的观点,上述定义中的两条可以表述为:

以上两条还可以转化为它们的等价命题(逆否命题):

为曲线C的方程;曲线C为方程f(x,y)=0的曲线(图形).
2.曲线方程的两个基本问题
(1)由曲线(图形)求方程的步骤:
①建系,设点:建立适当的坐标系,用变数对(x,y)表示曲线上任意一点M的坐标;
②立式:写出适合条件p的点M的集合p={M|p(M)};
③代换:用坐标表示条件p(M),列出方程f(x,y)=0;
④化简:化方程f(x,y)=0为最简形式;
⑤证明:以方程的解为坐标的点都是曲线上的点.
上述方法简称“五步法”,在步骤④中若化简过程是同解变形过程;或最简方程的解集与原始方程的解集相同,则步骤⑤可省略不写,因为此时所求得的最简方程就是所求曲线的方程.
(2)由方程画曲线(图形)的步骤:
①讨论曲线的对称性(关于x轴、y轴和原点);
②求截距:

③讨论曲线的范围;
④列表、描点、画线.
3.交点
求两曲线的交点,就是解这两条曲线方程组成的方程组.
4.曲线系方程
过两曲线f1(x,y)=0和f2(x,y)=0的交点的曲线系方程是f1(x,y)+λf2(x,y)=0(λ∈R).
四、圆
1.圆的定义
平面内与定点距离等于定长的点的集合(轨迹)叫圆.
2.圆的方程
(1)标准方程(x-a)2+(y-b)2=r2.(a,b)为圆心,r为半径.
特别地:当圆心为(0,0)时,方程为x2+y2=r2
(2)一般方程x2+y2+Dx+Ey+F=0

当D2+E2-4F<0时,方程无实数解,无轨迹.
(3)参数方程 以(a,b)为圆心,以r为半径的圆的参数方程为

特别地,以(0,0)为圆心,以r为半径的圆的参数方程为

3.点与圆的位置关系
设点到圆心的距离为d,圆的半径为r.

4.直线与圆的位置关系
设直线l:Ax+By+C=0和圆C:(x-a)2+(y-b)2=r2,则

5.求圆的切线方法
(1)已知圆x2+y2+Dx+Ey+F=0.
①若已知切点(x0,y0)在圆上,则切线只有一条,其方程是

过两个切点的切点弦方程.
②若已知切线过圆外一点(x0,y0),则设切线方程为y-y0=k(x-x0),再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线.
③若已知切线斜率为k,则设切线方程为y=kx+b,再利用相切条件求b,这时必有两条切线.
(2)已知圆x2+y2=r2.
①若已知切点P0(x0,y0)在圆上,则该圆过P0点的切线方程为x0x+y0y=r2.

6.圆与圆的位置关系
已知两圆圆心分别为O1、O2,半径分别为r1、r2,则

单元知识总结

一、圆锥曲线
1.椭圆
(1)定义
定义1:平面内一个动点到两个定点F1、F2的距离之和等于常数(大于|F1F2|),这个动点的轨迹叫椭圆(这两个定点叫焦点).
定义2:点M与一个定点的距离和它到一条定直线的距离的比是常

(2)图形和标准方程

(3)几何性质

2.双曲线
(1)定义
定义1:平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线(这两个定点叫双曲线的焦点).
定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e>1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点).
(2)图形和标准方程

图8-3的标准方程为:

图8-4的标准方程为:

(3)几何性质

3.抛物线
(1)定义
平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.
(2)抛物线的标准方程,类型及几何性质,见下表:

①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离.
②p的几何意义:焦点F到准线l的距离.

焦点弦长公式:|AB|=p+x1+x2
4.圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义
与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e表示,当0<e<1时,是椭圆,当e>1时,是双曲线,当e=1时,是抛物线.
二、利用平移化简二元二次方程
1.定义
缺xy项的二元二次方程Ax2+Cy2+Dx+Ey+F=0(A、C不同时为0)※,通过配方和平移,化为圆型或椭圆型或双曲线型或抛物线型方程的标准形式的过程,称为利用平移化简二元二次方程.
A=C是方程※为圆的方程的必要条件.
A与C同号是方程※为椭圆的方程的必要条件.
A与C异号是方程※为双曲线的方程的必要条件.
A与C中仅有一个为0是方程※为抛物线方程的必要条件.
2.对于缺xy项的二元二次方程:
Ax2+Cy2+Dx+Ey+F=0(A,C不同时为0)利用平移变换,可把圆锥曲线的一般方程化为标准方程,其方法有:①待定系数法;②配方法.

中心O′(h,k)

中心O′(h,k)
抛物线:对称轴平行于x轴的抛物线方程为
(y-k)2=2p(x-h)或(y-k)2=-2p(x-h),
顶点O′(h,k).
对称轴平行于y轴的抛物线方程为:(x-h)2=2p(y-k)或(x-h)2=-2p(y-k)
顶点O′(h,k).
以上方程对应的曲线按向量a=(-h,-k)平移,就可将其方程化为圆锥曲线的标准方程的形式.

❸ 成人高二公必备知识点数学

直线与方程
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。
②过两点的直线的斜率公式:
注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程
①点斜式:直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式:,直线斜率为k,直线在y轴上的截距为b
③两点式:()直线两点,
④截矩式:
其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。
⑤一般式:(A,B不全为0)
注意:各式的适用范围特殊的方程如:
平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);
(5)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线(是不全为0的常数)的直线系:(C为常数)
(二)垂直直线系
垂直于已知直线(是不全为0的常数)的直线系:(C为常数)
(三)过定点的直线系
(ⅰ)斜率为k的直线系:,直线过定点;
(ⅱ)过两条直线,的交点的直线系方程为
(为参数),其中直线不在直线系中。
(6)两直线平行与垂直
当,时,;
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(7)两条直线的交点
相交
交点坐标即方程组的一组解。
方程组无解;方程组有无数解与重合
(8)两点间距离公式:设是平面直角坐标系中的两个点,

(9)点到直线距离公式:一点到直线的距离
(10)两平行直线距离公式
在任一直线上任取一点,再转化为点到直线的距离进行求解。
高二数学知识点2
1、导数的定义:在点处的导数记作.
2.导数的几何物理意义:曲线在点处切线的斜率
①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。
3.常见函数的导数公式:
4.导数的四则运算法则:
5.导数的应用:
(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;
注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:
①求导数;
②求方程的根;
③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;
(3)求可导函数值与最小值的步骤:
ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

❹ 高一至高二数学知识整理

(一)

一 集合与简易逻辑
集合具有四个性质 广泛性 集合的元素什么都可以
确定性 集合中的元素必须是确定的,比如说是好学生就不具有这种性质,因为它的概念是模糊不清的
互异性 集合中的元素必须是互不相等的,一个元素不能重复出现
无序性 集合中的元素与顺序无关
二 函数
这是个重点,但是说起来也不好说,要作专题训练,比如说二次函数,指数对数函数等等做这一类型题的时候,要掌握几个函数思想如 构造函数 函数与方程结合 对称思想,换元等等
三 数列
这也是个比较重要的题型,做体的时候要有整体思想,整体代换,等比等差要分开来,也要注意联系,这样才能做好,注意观察数列的形式判断是什么数列,还要掌握求数列通向公式的几种方法,和求和公式,求和方法,比如裂项相消,错位相减,公式法,分组求和法等等
四 三角函数
三角函数不是考试题型,只是个应用的知识点,所以只要记熟特殊角的三角函数值和一些重要的定理就行
五 平面向量
这是个比较抽象的把几何与代数结合起来的重难点,结体的时候要有技巧,主要就是把基本知识掌握到位,注意拓展,另外要多做题,见的题型多,结体的时候就有思路,能够把问题简单化,有利于提高做题效率
高一的数学只是入门,只要把基础的掌握了,做题就没什么大问题了,数学就可以上130

(二)
一、集合、简易逻辑(14课时,8个)1.集合; 2.子集; 3.补集; 4.交集; 5.并集; 6.逻辑连结词; 7.四种命题; 8.充要条件.二、函数(30课时,12个)1.映射; 2.函数; 3.函数的单调性; 4.反函数; 5.互为反函数的函数图象间的关系; 6.指数概念的扩充; 7.有理指数幂的运算; 8.指数函数; 9.对数; 10.对数的运算性质; 11.对数函数. 12.函数的应用举例.三、数列(12课时,5个)1.数列; 2.等差数列及其通项公式; 3.等差数列前n项和公式; 4.等比数列及其通顶公式; 5.等比数列前n项和公式.四、三角函数(46课时17个)1.角的概念的推广; 2.弧度制; 3.任意角的三角函数; 4,单位圆中的三角函数线; 5.同角三角函数的基本关系式; 6.正弦、余弦的诱导公式’ 7.两角和与差的正弦、余弦、正切; 8.二倍角的正弦、余弦、正切; 9.正弦函数、余弦函数的图象和性质;10.周期函数; 11.函数的奇偶性; 12.函数 的图象; 13.正切函数的图象和性质; 14.已知三角函数值求角; 15.正弦定理; 16余弦定理; 17斜三角形解法举例.五、平面向量(12课时,8个)1.向量 2.向量的加法与减法 3.实数与向量的积; 4.平面向量的坐标表示; 5.线段的定比分点; 6.平面向量的数量积; 7.平面两点间的距离; 8.平移.六、不等式(22课时,5个)1.不等式; 2.不等式的基本性质; 3.不等式的证明; 4.不等式的解法; 5.含绝对值的不等式.七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率; 2.直线方程的点斜式和两点式; 3.直线方程的一般式; 4.两条直线平行与垂直的条件; 5.两条直线的交角; 6.点到直线的距离; 7.用二元一次不等式表示平面区域; 8.简单线性规划问题. 9.曲线与方程的概念;10.由已知条件列出曲线方程; 11.圆的标准方程和一般方程; 12.圆的参数方程.八、圆锥曲线(18课时,7个)1椭圆及其标准方程; 2.椭圆的简单几何性质; 3.椭圆的参数方程; 4.双曲线及其标准方程; 5.双曲线的简单几何性质; 6.抛物线及其标准方程; 7.抛物线的简单几何性质.九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质; 2.平面图形直观图的画法; 3.平面直线; 4.直线和平面平行的判定与性质; 5,直线和平面垂直的判与性质; 6.三垂线定理及其逆定理; 7.两个平面的位置关系; 8.空间向量及其加法、减法与数乘; 9.空间向量的坐标表示; 10.空间向量的数量积; 11.直线的方向向量; 12.异面直线所成的角; 13.异面直线的公垂线; 14异面直线的距离; 15.直线和平面垂直的性质; 16.平面的法向量; 17.点到平面的距离; 18.直线和平面所成的角; 19.向量在平面内的射影; 20.平面与平面平行的性质; 21.平行平面间的距离; 22.二面角及其平面角; 23.两个平面垂直的判定和性质; 24.多面体; 25.棱柱; 26.棱锥; 27.正多面体; 28.球.十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理. 2.排列; 3.排列数公式’ 4.组合; 5.组合数公式; 6.组合数的两个性质; 7.二项式定理; 8.二项展开式的性质.十一、概率(12课时,5个)1.随机事件的概率; 2.等可能事件的概率; 3.互斥事件有一个发生的概率; 4.相互独立事件同时发生的概率; 5.独立重复试验.选修Ⅱ(24个)十二、概率与统计(14课时,6个)1.离散型随机变量的分布列; 2.离散型随机变量的期望值和方差; 3.抽样方法; 4.总体分布的估计; 5.正态分布; 6.线性回归.十三、极限(12课时,6个)1.数学归纳法; 2.数学归纳法应用举例; 3.数列的极限; 4.函数的极限; 5.极限的四则运算; 6.函数的连续性.十四、导数(18课时,8个)1.导数的概念; 2.导数的几何意义; 3.几种常见函数的导数; 4.两个函数的和、差、积、商的导数; 5.复合函数的导数; 6.基本导数公式; 7.利用导数研究函数的单调性和极值; 8函数的最大值和最小值.十五、复数(4课时,4个)1.复数的概念; 2.复数的加法和减法; 3.复数的乘法和除法 答案补充高中数学有130个知识点,从前一份试卷要考查90个知识点,覆盖率达70%左右,而且把这一项作为衡量试卷成功与否的标准之一.这一传统近年被打破,取而代之的是关注思维,突出能力,重视思想方法和思维能力的考查. 现在的我们学数学比前人幸福啊!! 最后,我建议你经常上这个网站啦,www.pep.com.cn ,相信对你的学习会有帮助的,祝你成功! 答案补充一试 全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。 二试 1、平面几何 基本要求:掌握初中数学竞赛大纲所确定的所有内容。 补充要求:面积和面积方法。 几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。 几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点,重心。三角形内到三边距离之积最大的点,重心。 几何不等式。 简单的等周问题。了解下述定理: 在周长一定的n边形的集合中,正n边形的面积最大。 在周长一定的简单闭曲线的集合中,圆的面积最大。 在面积一定的n边形的集合中,正n边形的周长最小。 在面积一定的简单闭曲线的集合中,圆的周长最小。 几何中的运动:反射、平移、旋转。 复数方法、向量方法。 平面凸集、凸包及应用。 答案补充第二数学归纳法。 递归,一阶、二阶递归,特征方程法。 函数迭代,求n次迭代,简单的函数方程。 n个变元的平均不等式,柯西不等式,排序不等式及应用。 复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。 圆排列,有重复的排列与组合,简单的组合恒等式。 一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。 简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。 3、立体几何 多面角,多面角的性质。三面角、直三面角的基本性质。 正多面体,欧拉定理。 体积证法。 截面,会作截面、表面展开图。 4、平面解析几何 直线的法线式,直线的极坐标方程,直线束及其应用。 二元一次不等式表示的区域。 三角形的面积公式。 圆锥曲线的切线和法线。 圆的幂和根轴。

弄得有些乱哈,那个关键梳理知识点,然后还是看例题,把知识点融会贯通,然后,没事儿就把书上的知识点和公式,自己重新做一遍笔记,这样可以加深记忆,这个是我上高中时候的学习方法,效果还可以,我每次几乎都是满分的,其实关键还是找到适合自己的方法,祝你学习的更好啊

❺ 高二选择性必修二数学知识点有哪些

高二选择性必修二数学知识点有:

1、多面体:一般地,我们把由若干个平面多边形围成的几何体叫做多面体。围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。

2、旋转体:我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体。这条定直线叫做旋转体的轴。

3、棱柱:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个各四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。棱柱中,两个互相平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。

4、圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱。旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。

5、棱锥:一般地,有一个面是多边形,其余各面都是由一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥,这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共锥顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。

6、圆锥:以直角三角形的一天直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。圆锥也有轴、底面、侧面、母线。

7、棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。

8、圆台:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分,叫做圆台。圆台也有轴、底面、侧面、母线。

9、球:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球。半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径。

❻ 高二数学知识点及公式是什么

高二数学知识点及公式如下:

1、线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

2、万能公式:令tan(a/2)=t、sina=2t/(1+t^2)、cosa=(1-t^2)/(1+t^2)、tana=2t/(1-t^2)。积化和差:sina*cosb=[sin(a+b)+sin(a-b)]/2、cosa*sinb=[sin(a+b)-sin(a-b)]/2、cosa*cosb=[cos(a+b)+cos(a-b)]/2、sina*sinb=-[cos(a+b)-cos(a-b)]/2。

3、如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

4、函数的单调性、奇偶性、周期性。例如单调性定义:注意定义是相对于某个具体的区间而言。 判定方法有定义法(作差比较和作商比较)。 导数法(适用于多项式函数) 。

5、如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

❼ 高二数学知识点及公式有哪些

高二数学知识点及公式有如下:

1、锐角三角函数公式:sinα=∠α的对边/斜边。

2、三倍角公式:sin3α=4sinα·sin(π/3+α)sin(π/3-α)。

3、辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t)。

4、降幂公式:sin^2(α)=(1-cos(2α))/2=versin(2α)/2。

5、推导公式:tanα+cotα=2/sin2α。

❽ 江苏现在的高一升高二后,高二上学期数学准备学哪些知识点

很多人想知道高二数学的学习上有哪些重要的知识点,小编为大家整理了一些高二数学的重点知识,供参考!

1高二上学期数学知识点总结
一、不等式的性质
1.两个实数a与b之间的大小关系
2.不等式的性质
(4)(乘法单调性)
3.绝对值不等式的性质
(2)如果a>0,那么
(3)|a?b|=|a|?|b|.
(5)|a|-|b|≤|a±b|≤|a|+|b|.
(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.
二、不等式的证明
1.不等式证明的依据
(2)不等式的性质(略)
(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)
2.不等式的证明方法
(1)比较法:要证明a>b(a0(a-b<0),这种证明不等式的方法叫做比较法.
用比较法证明不等式的步骤是:作差——变形——判断符号.
(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.
(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.
证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.
三、解不等式
1.解不等式问题的分类
(1)解一元一次不等式.
(2)解一元二次不等式.
(3)可以化为一元一次或一元二次不等式的不等式.
①解一元高次不等式;
②解分式不等式;
③解无理不等式;
④解指数不等式;
⑤解对数不等式;
⑥解带绝对值的不等式;
⑦解不等式组.
2.解不等式时应特别注意下列几点:
(1)正确应用不等式的基本性质.
(2)正确应用幂函数、指数函数和对数函数的增、减性.
(3)注意代数式中未知数的取值范围.
3.不等式的同解性
(5)|f(x)|0)
(6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.
(9)当a>1时,af(x)>ag(x)与f(x)>g(x)同解,当0ag(x)与f(x)
四、《不等式》
解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。
五、《立体几何》
点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。
六、《平面解析几何》
有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学
七、《排列、组合、二项式定理》
加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。
八、《复数》
虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。
一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。
利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,
减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。
三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。
辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,
两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。
2高二上学期数学重点知识大全
一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件.
二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例.
三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式.
四、三角函数(46课时17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4,单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式’7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16余弦定理;17斜三角形解法举例.
五、平面向量(12课时,8个)1.向量2.向量的加法与减法3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移.
六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式.
七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题.9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程.
八、圆锥曲线(18课时,7个)1椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质.
九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5,直线和平面垂直的判与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球.
十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理.2.排列;3.排列数公式’4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质.
3高二数学期末复习建议
1、高二数学期末考试首先是对高二数学学习的检测,所以先要保证自己的基础知识没有问题,那么就需要高二学生在进行高二数学期末复习的时候要着重书上的重要知识点,在做题的时候一定要知道自己运用的什么知识点,如有不会及时解决。
2、高二数学期末考试中基础题为主要,所以在进行练习的时候要对典型题的解题步骤和易错要点注意。比如利用导数求函数单调性的步骤,数学归纳法的基本思路和步骤,排列组合中的分类讨论、排除法问题,用二项式定理求展开式中某项系数问题,服从典型分布的离散型随机变量问题。一定要细心,保证自己会的不丢分。
3、高二数学期末复习的时候就要学会掌控时间,数学对于有些人来说做题是很费时间的,所以一定要勤加练习,别造成考试的时候题会做,但是没有时间做,这样就很伤心了。
4、学习不能是死学,一定要活学活用,一个题目会了就要保证相类似的题型就差不多没问题。
5、考试中也会有难题出现,这就考查学生的能力了,所以在高二数学期末复习中还要做一些难题,以保证考试的时候没有思路。

❾ 数学高二上学期知识点有哪些

数学高二上学期知识点有如下:

1、当为整式或奇次根式时,R的值域。

2、当为偶次根式时,被开方数不小于0(即≥0)。

3、当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0。

4、当为指数式时,对零指数幂或负整数指数幂,底不为0。

5、当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。

6、分段函数的定义域是各段上自变量的取值集合的并集。

7、由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求。

8、对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。

9、对数函数的真数必须大于零,底数大于零且不等于1。