当前位置:首页 » 基础知识 » 重庆高一数学知识点
扩展阅读
茶啊二中动漫说的什么 2024-11-16 11:40:39
同学聚会请函怎么写 2024-11-16 11:39:00

重庆高一数学知识点

发布时间: 2022-07-02 17:22:58

㈠ 高一数学必修一知识点总结

高一数学必修1第一章知识点总结

一、集合有关概念
1. 集合的含义
2. 集合的中元素的三个特性:
(1) 元素的确定性,
(2) 元素的互异性,
(3) 元素的无序性,
3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2) 集合的表示方法:列举法与描述法。
 注意:常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

1) 列举法:{a,b,c……}
2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xR| x-3>2} ,{x| x-3>2}
3) 语言描述法:例:{不是直角三角形的三角形}
4) Venn图:
4、集合的分类:
(1) 有限集 含有有限个元素的集合
(2) 无限集 含有无限个元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=-5}

二、集合间的基本关系
1.“包含”关系—子集
注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A
2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”
即:① 任何一个集合是它本身的子集。AA
②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A B(或B A)
③如果 AB, BC ,那么 AC
④ 如果AB 同时 BA 那么A=B
3. 不含任何元素的集合叫做空集,记为Φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
 有n个元素的集合,含有2n个子集,2n-1个真子集
三、集合的运算
运算类型 交 集 并 集 补 集
定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).
设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
记作 ,即
CSA=








质 A A=A
A Φ=Φ
A B=B A
A B A
A B B
A A=A
A Φ=A
A B=B A
A B A
A B B
(CuA) (CuB)
= Cu (A B)
(CuA) (CuB)
= Cu(A B)
A (CuA)=U
A (CuA)= Φ.

例题:
1.下列四组对象,能构成集合的是 ( )
A某班所有高个子的学生 B着名的艺术家 C一切很大的书 D 倒数等于它自身的实数
2.集合{a,b,c }的真子集共有 个
3.若集合M={y|y=x2-2x+1,x R},N={x|x≥0},则M与N的关系是 .
4.设集合A= ,B= ,若A B,则 的取值范围是
5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,
两种实验都做错得有4人,则这两种实验都做对的有 人。
6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M= .
7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值

二、函数的有关概念
1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.
注意:
1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.
(6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义.
 相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)
(见课本21页相关例2)
2.值域 : 先考虑其定义域
(1)观察法
(2)配方法
(3)代换法
3. 函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .
(2) 画法
A、 描点法:
B、 图象变换法
常用变换方法有三种
1) 平移变换
2) 伸缩变换
3) 对称变换
4.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
(3)区间的数轴表示.
5.映射
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作f:A→B
6.分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
补充:复合函数
如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。
二.函数的性质
1.函数的单调性(局部性质)
(1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.
如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.
注意:函数的单调性是函数的局部性质;
(2) 图象的特点
如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.
(3).函数单调区间与单调性的判定方法
(A) 定义法:
○1 任取x1,x2∈D,且x1<x2;
○2 作差f(x1)-f(x2);
○3 变形(通常是因式分解和配方);
○4 定号(即判断差f(x1)-f(x2)的正负);
○5 下结论(指出函数f(x)在给定的区间D上的单调性).
(B)图象法(从图象上看升降)
(C)复合函数的单调性
复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”
注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.
8.函数的奇偶性(整体性质)
(1)偶函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
(2).奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.
(3)具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
利用定义判断函数奇偶性的步骤:
○1首先确定函数的定义域,并判断其是否关于原点对称;
○2确定f(-x)与f(x)的关系;
○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.
(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;
(3)利用定理,或借助函数的图象判定 .
9、函数的解析表达式
(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
(2)求函数的解析式的主要方法有:
1) 凑配法
2) 待定系数法
3) 换元法
4) 消参法
10.函数最大(小)值(定义见课本p36页)
○1 利用二次函数的性质(配方法)求函数的最大(小)值
○2 利用图象求函数的最大(小)值
○3 利用函数单调性的判断函数的最大(小)值:
如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);
如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);
例题:
1.求下列函数的定义域:
⑴ ⑵
2.设函数 的定义域为 ,则函数 的定义域为_ _
3.若函数 的定义域为 ,则函数 的定义域是
4.函数 ,若 ,则 =

6.已知函数 ,求函数 , 的解析式
7.已知函数 满足 ,则 = 。
8.设 是R上的奇函数,且当 时, ,则当 时 =
在R上的解析式为
9.求下列函数的单调区间:
⑴ (2)
10.判断函数 的单调性并证明你的结论.
11.设函数 判断它的奇偶性并且求证: .

㈡ 高中数学该怎样学要的到底是个什么思路

我个人认为,读数学勤奋很重要.这是我总结的学习数学的经验,希望对您有用。
1,首先你要培养对数学的兴趣,千万不要因为数学难,或者数学成绩不理想而对数学产生抗拒心理。如何培养,我的经验是,在闲余的时间里多找一些自己能力范围内的题来解,当你解出来的时候,好好体会那种长吁一口气的喜悦,随着解题成功率的提高,你对数学的兴趣就会上来了。
2,其次你上课必须认真听讲.认真不代表45分钟你要100%全神贯注,因为这也是不现实的.我的一个同学今年考上中科大,他认为,你要把可以全神贯注的听课的时间合理的分配在课堂的每个部分,基础好的注意补缺补漏,基础相对不行的注意老师讲的定义和例题的解答(这很重要).
3,课后适当选择合理的题目来完成,不一定要做老师布置的,但一定要做适合自己的,尤其是薄弱的环节.我高三复习的时候,学校发了很多卷子,我几乎没有一张是完整做完的,都是东做一题,西做一题,这不是乱做,是结合自己的实际情况合理的选择.做多了题没用,但不做题更没用.所以,做题要合理选择,过程要严谨认真,做错了千万不能给自己找借口.
4,树立自信积极的学习态度.学习这件事,自信很重要.我当初是主动帮助同学解答数学问题,你的成功率高,同学们以后自然会来找你,这样..你就会越来越自信的。
5,勇敢的面对错误,勇敢的改正错误,不要给自己的错误找任何借口,比如说:哎呀,这题会做啊,就是看错或算错了。.你想过没有?你为什么会犯这种错误?是哪个思维环节出了问题?你找到以后,再次遇到这个问题的话,你就会很小心了。记住:一个错误犯一次俩次不可怕,如果一直犯下去的话,你就是白痴了。.
6,多多总结规律,数学是个规律性很强的东西,多多总结你就会发现其中的共性,切忌题海战术!!
补充:至于什么订错本,非常工整的笔记本之类的..我觉得这应该看个人情况,说实话,这些我都没有,我高考的数学是138分.不是很拔尖的分数,但绝对不会拖你后退的.
还有再强调一下:勤能补拙.
祝你好运,但愿这些话对你有好处.

㈢ 高一数学知识点总结


集合与简易逻辑
集合具有四个性质
广泛性
集合的元素什么都可以
确定性
集合中的元素必须是确定的,比如说是好学生就不具有这种性质,因为它的概念是模糊不清的
互异性
集合中的元素必须是互不相等的,一个元素不能重复出现
无序性
集合中的元素与顺序无关

函数
这是个重点,但是说起来也不好说,要作专题训练,比如说二次函数,指数对数函数等等做这一类型题的时候,要掌握几个函数思想如
构造函数
函数与方程结合
对称思想,换元等等

数列
这也是个比较重要的题型,做体的时候要有整体思想,整体代换,等比等差要分开来,也要注意联系,这样才能做好,注意观察数列的形式判断是什么数列,还要掌握求数列通向公式的几种方法,和求和公式,求和方法,比如裂项相消,错位相减,公式法,分组求和法等等

三角函数
三角函数不是考试题型,只是个应用的知识点,所以只要记熟特殊角的三角函数值和一些重要的定理就行

平面向量
这是个比较抽象的把几何与代数结合起来的重难点,结体的时候要有技巧,主要就是把基本知识掌握到位,注意拓展,另外要多做题,见的题型多,结体的时候就有思路,能够把问题简单化,有利于提高做题效率
常用导数公式
1.y=c(c为常数)
y'=0
2.y=x^n
y'=nx^(n-1)
3.y=a^x
y'=a^xlna
y=e^x
y'=e^x
4.y=logax
y'=logae/x
y=lnx
y'=1/x
5.y=sinx
y'=cosx
6.y=cosx
y'=-sinx
7.y=tanx
y'=1/cos^2x
8.y=cotx
y'=-1/sin^2x
9.y=arcsinx
y'=1/√1-x^2
10.y=arccosx
y'=-1/√1-x^2
11.y=arctanx
y'=1/1+x^2
12.y=arccotx
y'=-1/1+x^2

㈣ 高一数学必修一知识点和公式

三角函数公式
两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
积化和差 2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
和差化积 sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgB=sin(A+B)/sinAsinB
-ctgA+ctgB=sin(A+B)/sinAsin
集合与函数概念
一,集合有关概念
1,集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.
2,集合的中元素的三个特性:
1.元素的确定性; 2.元素的互异性; 3.元素的无序性
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素.
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素.
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.
(4)集合元素的三个特性使集合本身具有了确定性和整体性.
3,集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
1. 用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}
2.集合的表示方法:列举法与描述法.
注意啊:常用数集及其记法:
非负整数集(即自然数集) 记作:n
正整数集 n*或 n+ 整数集z 有理数集q 实数集r
关于"属于"的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合a的元素,就说a属于集合a 记作 a∈a ,相反,a不属于集合a 记作 a(a
列举法:把集合中的元素一一列举出来,然后用一个大括号括上.
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.
①语言描述法:例:{不是直角三角形的三角形}
②数学式子描述法:例:不等式x-3]2的解集是{x(r| x-3]2}或{x| x-3]2}
4,集合的分类:
1.有限集 含有有限个元素的集合
2.无限集 含有无限个元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5}
二,集合间的基本关系
1."包含"关系—子集
注意:有两种可能(1)a是b的一部分,;(2)a与b是同一集合.
反之: 集合a不包含于集合b,或集合b不包含集合a,记作ab或ba
2."相等"关系(5≥5,且5≤5,则5=5)
实例:设 a={x|x2-1=0} b={-1,1} "元素相同"
结论:对于两个集合a与b,如果集合a的任何一个元素都是集合b的元素,同时,集合b的任何一个元素都是集合a的元素,我们就说集合a等于集合b,即:a=b
① 任何一个集合是它本身的子集.a(a
②真子集:如果a(b,且a( b那就说集合a是集合b的真子集,记作ab(或ba)
③如果 a(b, b(c ,那么 a(c
④ 如果a(b 同时 b(a 那么a=b
3. 不含任何元素的集合叫做空集,记为φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集.
三,集合的运算
1.交集的定义:一般地,由所有属于a且属于b的元素所组成的集合,叫做a,b的交集.
记作a∩b(读作"a交b"),即a∩b={x|x∈a,且x∈b}.
2,并集的定义:一般地,由所有属于集合a或属于集合b的元素所组成的集合,叫做a,b的并集.记作:a∪b(读作"a并b"),即a∪b={x|x∈a,或x∈b}.
3,交集与并集的性质:a∩a = a, a∩φ= φ, a∩b = b∩a,a∪a = a,a∪φ= a ,a∪b = b∪a.
4,全集与补集
(1)补集:设s是一个集合,a是s的一个子集(即),由s中所有不属于a的元素组成的集合,叫做s中子集a的补集(或余集)
记作: csa 即 csa ={x ( x(s且 x(a}
(2)全集:如果集合s含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集.通常用u来表示.
(3)性质:⑴cu(c ua)=a ⑵(c ua)∩a=φ ⑶(cua)∪a=u

㈤ 数学高一上学期重点知识点(大纲)

高一上学期的数学内容并不多,但是难度不低。难度并不在于知识点的深度和综合能力,而在于从初中相对具体形象的数学学习一下进入高中抽象的,与生活似乎关系不大的学习,很多同学表现出非常大不适应。因此,如果觉得高一数学“难”,复习的重点,应当放在分析为什么自己觉得学习过的知识点“难”上。

难点一:抽象函数

F规则的含义虽然看起来简单,但如果理解不深刻,对于后面的解题有很大的影响。解决抽象函数难点的思路主要有这样两条:

(1) 将抽象函数的内容与具体函数的性质结合起来。抽象函数作为理解函数的一个上位的要求,对于所有的具体函数都具有指导意义。高一学习的指数,对数和幂三种函数的具体性质,都是抽象函数性质在具体函数中的表现。函数的定义域,值域,单调性,奇偶性,这些内容既是抽象函数的核心内容,又是具体函数具体性质的表现。结合起来记忆,效果更好。

(2) 所有和抽象函数相关的综合问题,一定首先想办法将抽象函数的条件化为具体条件,转化的方法,就是利用抽象函数的性质。很多综合题中都会出现抽象函数的条件,对于这种题目,首先要解决的就是将这些条件中的f去掉。比如f(a)<f(b),保留f,无论a与b如何简单,不利用单调性条件去掉f,问题都解决不了。

难点二:三角函数

这一部分的重点是一定要从初中锐角三角函数的定义中跳出来。在教学中,我注意到有些学生仍然在遇到三角函数题目的时候画直角三角形协助理解,这是十分危险的,也是我们所不提倡的。三角函数的定义在引入了实数角和弧度制之后,已经发生了革命性的变化,sinA中的A不一定是一个锐角,也不一定是一个钝角,而是一个实数——弧度制的角。有了这样一个思维上的飞跃,三角函数就不再是三角形的一个附属产品(初中三角函数很多时候依附于相似三角形),而是一个具有独立意义的函数表现形式。

既然三角函数作为一种函数意义的理解,那么,它的知识结构就可以完全和函数一章联系起来,函数的精髓,就在于图象,有了图象,就有了所有的性质。对于三角函数,除了图象,单位圆作为辅助手段,也是非常有效——就好像配方在二次函数中应用广泛是一个道理。

三角恒等变形部分,并无太多诀窍,从教学中可以看出,学生听懂公式都不难,应用起来比较熟练的都是那些做题比较多的同学。题目做到一定程度,其实很容易发现,高一考察的三角恒等只有不多的几种题型,在课程与复习中,我们也会注重给学生总结三角恒等变形的“统一论”,把握住降次,辅助角和万能公式这些关键方法,一般的三角恒等迎刃而解。关键是,一定要多做题。

难点三:向量部分

这部分其实是这学期最简单的部分。简单的原因是,以前从来没有学过,初次接触,考试不会太难。这部分的复习也最为轻松——围绕向量的几何表示,代数表示和坐标表示理解向量的各种运算法则。

难点四:综合题型

压轴题基本上,都是以函数一章作为最核心的知识载体,中间掺杂向量和三角的运算。解决这样的题目,方法几乎是固定的,那就是首先利用抽象函数性质,将带有f的条件化为不带有f的条件,然后利用三角与向量的运算化简或证明。非压轴题出题方法可能更自由,但是综合性往往没有太强,仍然属于各个板块内的综合。

㈥ 高一数学知识点有哪些

1、集合(包括:集合与几何的表示方法;集合之间的关系与运算)

2、函数(函数的表示方法;单调性与奇偶性;一次函数和二次函数;函数的应用与方程)

3、基本初等函数(指数与指数函数;对数与对数函数;幂函数及函数的应用)

4、数列:这也是个比较重要的题型,做体的时候要有整体思想,整体代换,等比等差要分开来,也要注意联系,这样才能做好,注意观察数列的形式判断是什么数列,还要掌握求数列通向公式的几种方法,和求和公式,求和方法,比如裂项相消,错位相减,公式法,分组求和法等等。

(6)重庆高一数学知识点扩展阅读:

三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割

中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,

顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,

变成锐角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

㈦ 高一数学知识点有哪些

高一数学知识点如下:

1、如果一条直线的两个点在一个平面内,那么这条直线上的所有点都在这个平面内。

2、元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}。

3、偶次方根的被开方数不小于零,零取零次方没有意义。

4、换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式。

5、真子集:如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作AB(或BA)。

㈧ 高一数学必修一各章知识点总结



1




11








1








第一章

集合与函数概念

一、集合有关概念

1.

集合的含义

2.

集合的中元素的三个特性:

(1)

元素的确定性如:世界上最高的山

(2)

元素的互异性如:由
HAPPY
的字母组成的集合
{H,A,P,Y}
(3)

元素的无序性
:
如:
{a,b,c}

{a,c,b}
是表示同一个集合

3.
集合的表示:
{

}
如:
{
我校的篮球队员
}

{
太平洋
,
大西

,
印度洋
,
北冰洋
}
(1)

用拉丁字母表示集合:
A={
我校的篮球队员
},B={1,2,3,4,5}
(2)

集合的表示方法:列举法与描述法。



注意:常用数集及其记法:

非负整数集(即自然数集)

记作:
N
正整数集
N*

N+
整数集
Z
有理数集
Q
实数集
R

1


列举法:
{a,b,c
……
}
2


描述法:
将集合中的元素的公共属性描述出来,
写在大括号内
表示集合的方法。
{x

R| x-3>2} ,{x| x-3>2}
3


语言描述法:例:
{
不是直角三角形的三角形
}
4


Venn

:
4
、集合的分类:

(1)

有限集

含有有限个元素的集合

(2)

无限集

含有无限个元素的集合

(3)

空集

不含任何元素的集合


例:
{x|x
2
=

5



二、集合间的基本关系

1.
‚包含‛关系—子集

注意:
B
A

有两种可能(
1

A

B
的一部分,


2

A

B
是同
一集合。

反之
:
集合
A
不包含于集合
B,
或集合
B
不包含集合
A,
记作
A


B

B


A
2

‚相等‛关系:
A=B (5

5
,且
5

5
,则
5=5)
实例:

A={x|x
2
-1=0} B={-1,1}
‚元素相同则两集合相等‛

即:①

任何一个集合是它本身的子集。
A

A
②真子集
:
如果
A

B,

A


B
那就说集合
A
是集合
B
的真子集,记

A
B(

B
A)
③如果
A

B, B

C ,
那么
A

C


如果
A

B
同时
B

A
那么
A=B
3.
不含任何元素的集合叫做空集,记为
Φ

规定
:
空集是任何集合的子集,

空集是任何非空集合的真子集。




n
个元素的集合,含有
2
n
个子集,
2
n-1
个真子集

三、集合的运算

㈨ 高一上学期数学重点知识点有哪些

高一上学期数学重点知识点有如下:

一、圆锥曲线的方程

1、椭圆:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)。

2、双曲线:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)。

3、抛物线:y2=±2px(p>0),x2=±2py(p>0)。

二、函数奇偶性

1、如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

2、如果对于函数定义域内的任意一个x,都有f(x)=f(-x),那么函数f(x)就叫做偶函数。

三、求函数值域的方法

1、直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数。

2、换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式。

四、二次函数的零点

1、△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。

2、△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。

3、△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。

五、求函数定义域的主要依据

1、分式的分母不为零。

2、偶次方根的被开方数不小于零,零取零次方没有意义。

3、对数函数的真数必须大于零。

㈩ 高一数学知识点

图象角度:t是周期,是最小正周期的倍数(如1倍,2倍……)。所以t=2πk /w
代数式角度:而当wt=2kπ时解析式一样,图象重合
由w π /2=2kπ解得w的取值,补集即为不能取的值。 兀/2可能是最小正周期,可能是周期的倍数