1. 中职数学高一知识点有哪些
中职数学高一知识点如下:
1、集合的三个特性:确定性,作为集合的元素,必须是能够确定的。互异性,对于一个给定的集合,集合中的元素是互异的。无序性,集合中的元素没有前后顺序。
2、列举法:当集合元素不多时,把集合中的元素一一列举出来,写在大括号内表示集合。
3、集合论:如果两个无限集M,N的元素之间存在一一对应,那么它们所含元素个数是相等的。
4、提取公因式法:提取公因式分解成两个一次因式乘积的形式,将一元二次不等式转化成两个一元一次不等式组求解。
5、将一个周角分成360等分,规定其中的每一等分为1度的角,这种以“度”为单位来度量角的制度叫做角度制。而弧度制就是以“弧度”为单位来度量角的制度。
2. 数学初中全部重要知识点有哪些
数学初中全部重要知识点:
一、一元一次方程
1、只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
3、一元一次方程解法的一般步骤:整理方程、去分母、去括号、移项、合并同类项、系数化为1。
二、解一元二次方程的步骤
1、配方法的步骤
先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式。
2、分解因式法的步骤
把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式。
3、公式法
就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c。
4、韦达定理
利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a。
也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用。
5、一元一次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diaota”,而△=b2-4ac,这里可以分为3种情况:
(1)当△>0时,一元二次方程有2个不相等的实数根。
(2)当△=0时,一元二次方程有2个相同的实数根。
(3)当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)。
三、有理数
1、定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。
2、数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。
3、相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。
4、绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
5、有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
6、有理数的乘法
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘,积为0。例:0×1=0。
7、有理数的除法
除以一个不为0的数,等于乘这个数的倒数。
3. 中职生单招数学都考什么知识点
中职生对囗高职,考语数英和专业知识,其中你问的数学与其他一样都是考最基础的东西,例:2 6 10 ( ) 18