⑴ 离散数学这门课程第五章函数的知识点有哪些
离散数学这门课第五章函数的知识点包含章节导引,第一节函数的概念和性质,第二节可数集、不可数集和不可解问题,课后巩固,。
⑵ 离散数学这门课程第一章集合论的知识点有哪些
离散数学这门课第一章集合论的知识点包含章节导引,第一节集合的概念,第二节集合的运算,第三节集合运算的性质,第四节有限集合的计数,课后巩固,。
⑶ 离散数学这门课程第八章基本计数方法的知识点有哪些
离散数学这门课第八章基本计数方法的知识点包含章节导引,第一节鸽巢原理,第二节加法原理与乘法原理,第三节不可重复的排列和组合,第四节二项式系数,第五节可重复的排列和组合,第六节容斥原理,课后巩固,。
⑷ 离散数学这门课程第三章一阶逻辑的知识点有哪些
离散数学这门课第三章一阶逻辑的知识点包含章节导引,第一节谓词和谓词公式,第二节谓词公式的等值演算和前束范式,第三节一阶逻辑的推理理论,课后巩固,。
⑸ 学习离散数学和线性代数需要什么基础
离散数学:
教材中主要是图论,逻辑计算等,依靠的是思维的思考,相对于计算难度不大,对过去的基础没什么要求
线性代数:
归根结底是要学习齐次和非齐次方程组的解法,前面的基础是行列式和矩阵,高中的基础可以没有,要说需要什么基础,我觉得是初中数学的解的方程组,方程组会解,线性代数这部分计算上是没问题的,剩下的是理解概念和解题的步骤了
离散数学是现代数学的一个重要分支,是计算机科学与技术的理论基础。如果说“高科技本质上是数学技术”的话,计算机科学与技术基本上是离散数学技术。所以离散数学又称为计算机数学,是计算机科学与技术专业的核心、骨干课程。
离散数学应着重掌握数理逻辑、集合与关系、代数系统的一般性质、图论初步等方面的基本概念和简单应用,特别应注意体会书中的典型例题,以促进对主要内容的掌握。 数学是一种分析问题、解决问题的实践活动。与打猎一样是活本领。像转换观点、选择方法、熟悉软件、检验结果、发现毛病、查找原因多环节只有亲身经历才能学到手。 学到这些活本领,就是一些基本素质问题。离散数学可以帮助学生提高数学素质。提高创造力。
线性代数应该是数学三门课中最好拿分的,但是这门课有一个特点,就是入门难,但是一旦入门就一通百通,这门课由于思维上与高数南辕北辙所以一上来会很不适应。总体而言6章内容环环相扣,所以很多同学一上来看第一章发现内容涉及到第五章,看到第二章发现竟有第4章的知识点,无法形成完整的知识网络,自然无法入门,总的来说这本书6章内容应该分为三个部分逐个攻破,首先行列式和矩阵,第二向量与方程组,第三第5和第六章,这三个内容联系得相当紧密,必须逐个攻破,这样以两章为单位,每个单位中出现的知识点定理罗列出来,找到他们彼此的关系,最好是拿一张白纸,像C语言中的指针那样一个一个连起来,形成属于你的知识网络,这一部分有哪些板块,每个板块有哪些定义知识点,比如行列式的定义,矩阵的定义各是什么,你是怎么理解的,向量与方程组有什么联系与区别,这些最基础的一定要搞清。不要一上来就看李永乐的视频,因为那个视频是强化阶段看的,建议听一下施光燕的线性代数12讲,这位老师讲的内容很基础,只有十二讲,但是全讲到重点上去了,这样你就会很容易入门了!
对于概率论,第一章是整本书的思维基础,第二章与第三章的逻辑思维就好像一元积分与二元积分一样,难点在于二元积分的计算,所以高数的基础一定要好,在学习的过程中还是要先思考这一章节有哪些部分,每个部分哪些定义,哪些知识点,自己要找一张大纸,将这些全部像C语言中二叉树一样,罗列成一个树形图,最后根据每一个知识点各个击破。第5章不用细看,第六章第七章主要是记忆,在记忆的基础上尽可能的理解。浙大版的书上每章的课后题相当经典,请同学们反复推敲,做过之后,请在总结一遍,比如说这几道题是属于离散型还是连续型,对应了哪些知识点。
⑹ 离散数学知识点
离散数学重点和难点都在后几章,图和树的部分,都是重点章节。特别是一些公式必须熟记。考的很多。
另外就是集合,关系和函数这两章也很重要,因为这两章是给后面打基础的,没有这两章,图和树很难学,相对来说考的也比较多。
⑺ 离散数学基本知识
总结 离散数学知识点 命题逻辑
→,前键为真,后键为假才为假;<—>,相同为真,不同为假;
主析取范式:极小项(m)之和;主合取范式:极大项(M)之积;
求极小项时,命题变元的肯定为1,否定为0,求极大项时相反;
求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假;
求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写;
真值表中值为1的项为极小项,值为0的项为极大项;
n个变元共有个极小项或极大项,这为(0~-1)刚好为化简完后的主析取加主合取;
永真式没有主合取范式,永假式没有主析取范式;
推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假)
10.命题逻辑的推理演算方法:P规则,T规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 谓词逻辑
一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n个个体,多元谓词描述个体之间的关系;
全称量词用蕴含→,存在量词用合取^;
既有存在又有全称量词时,先消存在量词,再消全称量词; 集合
N,表示自然数集,1,2,3……,不包括0;
基:集合A中不同元素的个数,|A|;
幂集:给定集合A,以集合A的所有子集为元素组成的集合,P(A);
若集合A有n个元素,幂集P(A)有个元素,|P(A)|==;
集合的分划:(等价关系) ①每一个分划都是由集合A的几个子集构成的集合; ②这几个子集相交为空,相并为全(A);
集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 关系
若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的基数为mn,A到B上可以定义种不同的关系;
若集合A有n个元素,则|A×A|=,A上有个不同的关系;
⑻ 离散数学这门课程第六章图论基础的知识点有哪些
离散数学这门课第六章图论基础的知识点包含章节导引,第一节图及其表示,第二节握手定理,第三节图的连通性,第四节顶点着色,第五节图同构,课后巩固,。