当前位置:首页 » 基础知识 » 七年级下册数学知识点整理
扩展阅读
同学小聚会表演什么节目 2024-11-13 14:07:15
大连同学聚会有多少 2024-11-13 14:05:47
樱花课堂的小知识 2024-11-13 14:05:46

七年级下册数学知识点整理

发布时间: 2022-03-13 19:04:31

1. 七年级下册数学知识

、在同一个平面内,不相交的两条直线叫做平行线.

2、同位角:两条直线a,b被第三条直线c所截,在截线c的同旁,被截两直线a,b的同一侧的角,这两个角称为同位角.

3、内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.

4、同旁内角:两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角.

5、一个图形沿某个方向移动,在移动过程中,原图形上所有的点都沿同一个方向移动相等的距离,这样的图形运动叫做图形的平移.

6、像0.9x+0.12y=4.6,含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程.

7、使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的解.

8、由两个一次方程组成,并且含有两个未知数的方程组,叫做二元一次方程组.

9、同时满足二元一次方程组中各个方程的解,叫做这个二元一次方程组的解.

10、解方程的基本思想就是“消元”,也就是把解二元一次方程组转化为解一元一次方程,这种解方程组的方法称为代入消元法,简称代入法.

11、对于二元一次方程组,当两个方程的同一个未知数的系数是互为相反数或相同时,可以通过把两个方程的两边相加或相减来消元,转化为一元一次方程求解,这种解二元一次方程组的方法叫做加减消元法,简称加减法.

12、和二元一次方程类似,含有三个未知数,且含有未知数的项的次数都是一次的方程叫做三元一次方程.

13、由三个一次方程组成,并且含有三个未知数的方程组叫做三元一次方程组.

14、一般地,把一个多项式化成几个整式的积的形式,叫做因式分解.

15、一般地,一个多项式中每一项都含有的相同的因式,叫做这个多项式各项的公因式.

16、如果一个多项式的各项含有公因式,那么可把该公因式提取出来进行因式分解,这种分解因式的方法,叫做提取公因式法.

17、把多项式a2+2ab+b2及a2-2ab+b2叫做完全平方式.

18、一般地,利用公式a2-b2=(a+b)(a-b),或a2±2ab+b2=(a±b)把一个多项式分解因式的方法,叫做公式法.

19、代数式都表示两个整式相除,且除式中含有字母.像这样的代数式叫做分式.

20、把一个分式的分子和分母的公因式约去,叫做分式的约分.

21、约分要约去分子、分母所有的公因

2. 初一下学期数学知识点总结

第五章:
本章重点:一元一次不等式的解法,
本章难点:了解不等式的解集和不等式组的解集的确定,正确运用
不等式基本性质3。
本章关键:彻底弄清不等式和等式的基本性质的区别.
(1)不等式概念:用不等号(“≠”、“<”、“>”)表示的不 等关系的式子叫做不等式
(2)不等式的基本性质,它是解不等式的理论依据.
(3)分清不等式的解集和解不等式是两个完全不同的概念.
(4)不等式的解一般有无限多个数值,把它们表示在数轴上,(5)一元一次不等式的概念、解法是本章的重点和核心
(6)一元一次不等式的解集,在数轴上表示一元一次不等式的解集
(7)由两个一元一次不等式组成的一元一次不等式组.一元一次不等式组可以由几个(同未知数的)一元一次不等式组成
(8).利用数轴确定一元一次不等式组的解集
第六章:
1.二元一次方程,二元一次方程组以及它的解,明确二元一次方程组的解是一对未知数的值,会检验一对数值是不是某一个二元一次方程组的解.
2.一次方程组的两种基本解法,能灵活运用代入法,加减法解二元一次方程组及简单的三元一次方程组.
3.根据给出的应用问题,列出相应的二元一次方程组或三元一次方程组,从而求出问题的解,并能根据问题的实际意义,检查结果是否合理.
本章的重点是:二元一次方程组的解法——代入法,加减法以及列一次方程组解简单的应用问题.
本章的难点是:
1.会用适当的消元方法解二元一次方程组及简单的三元一次方程组;
2.正确地找出应用题中的相等关系,列出一次方程组.
第七章
本章重点是:整式的乘除运算,特别是对幂的运算及乘法公式的应用要达到熟练程度.
本章难点是:对乘法公式结构特征和公式中字母意义的理解及乘法公式的灵活应用
1.幂的运算性质,正确地表述这些性质,并能运用它们熟练地进行有关计算.
2.单项式乘以(或除以)单项式,多项式乘以(或除以)单项式,以及多项式乘以多项式的法则,熟练地运用它们进行计算.
3.乘法公式的推导过程,能灵活运用乘法公式进行计算.
4.熟练地运用运算律、运算法则进行运算,
5.体会用字母表示数和用字母表示式子的意义.通过式的变形,深入理解转化的思想方法.
第八章:
1、认识事物的几种方法:观察与实验 归纳与类比 猜想与证明 生活中的说理 数学中的说理
2、定义、命题、公理、定理
3、简单几何图形中的推理
4、余角、补交、对顶角
5、平行线的判定
判定:一个公理两个定理。
公理:两直线被第三条直线所截,如果同位角相等(数量关系)两直线平行(位置关系)
定理:内错角相等(数量关系)两直线平行(位置关系)
定理:同旁内角互补(数量关系)两直线平行(位置关系).
平行线的性质:
两直线平行,同位角相等
两直线平行,内错角相等
两直线平行,同旁内角互补
由图形的“位置关系”确定“数量关系”
第九章:
重点:因式分解的方法,
难点:分析多项式的特点,选择适合的分解方法
1. 因式分解的概念;
2.因式分解的方法:提取公因式法、公式法、分组分解法(十字相乘法)
3.运用因式分解解决一些实际问题.(包括图形习题)
第十章:
重点是:用统计知识解决现实生活中的实际问题.
难点是:用统计知识解决实际问题.
1.统计初步的基本知识,平均数、中位数、众数等的计算、
2.了解数据的收集与整理、绘画三种统计图.
3.应用统计知识解决实际问题能解决与统计相关的综合问题.

3. 初一下册的数学知识点·难点归纳(全书)

你们有没有发数学周报(一大本的那个)每个单元都会有一个总结。你要没有看看书店或其他地方有没有

4. 人教版数学七年级下册知识点整理与复习

http://wenku..com/view/126a436db84ae45c3b358c85.html
网络文库有

5. 七年级下册数学知识点归纳

第五章 平等线与相交线
1、同角或等角的余角相等,同角或等角的补角相等。
2、对顶角相等
3、判断两直线平行的条件:
1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。 3)同旁内角互补,两直线平行。 (4)如果两条直线都和第三条直线平行,那么这两面三刀条直线也互相平行。
4、平行线的特征:
(1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。 (3)同旁内角互补,两直线平行。
5、命题:
⑴命题的概念:
判断一件事情的语句,叫做命题。
⑵命题的组成
每个命题都是题设、结论两部分组成。题设是已知事项;结论是由已知事项推出的事项。命题常写成“如
果……,那么……”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。
6、平移
平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移,平移不改变物体的形状和大小。
(1) 把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
(2) 新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。连接各组对应点的线段平行且相等。
第六章 平面直角坐标系
1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)
2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。
3、在平面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。平面直角坐标系有两个坐标轴,其中横轴为X轴,取向右方向为正方向;纵轴为Y轴,取向上为正方向。坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点。X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般情况下,x轴和y轴取相同的单位长度。
3、特殊位置的点的坐标的特点:
(1).x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
(2).第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
(3).在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
4.点到轴及原点的距离
点到x轴的距离为|y|; 点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;
在平面直角坐标系中对称点的特点:
1.关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。
2.关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。
3关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。
各象限内和坐标轴上的点和坐标的规律:
第一象限:(+,+) 第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)
x轴正方向:(+,0)x轴负方向:(-,0)y轴正方向:(0,+)y轴负方向:(0,-)
x轴上的点纵坐标为0,y轴横坐标为0。
第七章 三角形
1、三角形任意两边之和大于第三边,确形任意两边之差小于第三边。
2、三角形三个内角的和等于180度。
3、直角三角形的两个锐角互余
4、三角形的三条角平分线交于一点,三条中线交于一点;三角形的三条高所在的直线交于一点。
5、直角三角形全等的条件:
斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。
(只要有任意两条边相等,这两个直角三角形就全等)。
6、三角形全等的条件:
(1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
(2)两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。
(3)两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。
(4)两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。
27、等腰三角形的特征:
(1) 有两条边相等的三角形叫做等腰三角形;
(2) 等腰三角形是轴对称图形;
(3) 等腰三角形顶角的平分线、底边上的中线、底边上的重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴。
(4)等腰三角形的两个底角相等。
(5)等腰三角形的底角只能是锐角

6. 七年级下册数学必考的知识点有哪些

精锐教育:不同省份的教科书都是不一样的,例如沪教版的,重点在于实数的运算,全等三角形的判定以及平面直角坐标系的相关概念等等

7. 七年级上下册数学知识要点

知识梳理:
⑴正数与负数:负数产生的必要性;具有相反意义的量。
⑵有理数的分类:整数、分数统称有理数;整数又包括正整数、零、负整数,分数又包括正分数与负分数。
⑶相反数、倒数、绝对值:
只有符号不同的两个数是互为相反数,a的相反数为-a;
一个数除以1所得的商是这个数的倒数,零没有倒数;
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
⑷数轴:原点、正方向、单位长度是数轴的三要素。
⑸有理数的大小比较:
方法一:零大于一切正数,而小于一切负数;
两个负数,绝对值大的反而小。
方法二:在数轴上,右边的点表示的数总比左边的点表示的数大。
实 数
一、 知识梳理:
1、实数的分类.有理数(正有理数、0、负有理数),无理数(无限不循环小数)
2、实数的有关概念:
(1)平方根:一般地,如果一个数的平方等于 ,那么这个数叫做 的平方根.正数有两个平方根,负数没有平方根,0的平方根是0
(2)算术平方根:正数的正平方根和零的平方根,统称算术平方根.
(3)立方根:一个数的立方等于a,这个数叫做a的立方根。
3、实数与数轴上的点一一对应。会在数轴上表示有些无理数
知识要点】
1.只含有一个未知数,并且未知数的次数是一次的整式方程叫做一元一次方程
2.解一元一次方程的一般步骤是:
(1)去分母(2)去括号(3)移项(4)合并同类项(5)将未知数的系数化为“1”
3.一元一次方程ax=b的解的情况:
(1)当a≠0时,ax=b有唯一的解
(2)当a=0,b≠0时,ax=b无解
(3)当a=0,b=0时,ax=b有无穷多个解【
知识要点:
1.因式分解定义:把一个多项式化成几个_______式乘积的形式.因式分解与整式的乘法是互为________.
2.因式分解的基本方法:
(1)提取公因式法(首先考虑的方法)、应用公式法、分组分解法、十字相乘法.
(2)公式:a2-b2=__ _____,a2±2ab+b2=___ ____,
a3+b3=____ ____,a3-b3=___ ____.
3.因式分解的一般步骤
先看有没有公因式,若有立即提出;然后看看是几项式,若是二项式则用平方差、立方或立方差公式;若是三项式用完全平方公式或十字相乘法;若是四项及以上的式子用分组分解法,要注意分解到不能再分解为止.
一,知识梳理:
1、 有理数的加法、减法、乘法、除法、乘方运算法则、混合运算
2、 运算律:交换律、结合律、分配律,去括号法则
(1)有理数的加法法则:
1. 同号两数相加,和取相同的符号,并把绝对值相加;
2. 绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
3. 一个数与零相加仍得这个数;
4. 两个互为相反数相加和为零。
⑵有理数的减法法则:
减去一个数等于加上这个数的相反数。
补充:去括号与添括号:
去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。
添括号法则:在“+”号后边添括号,括到括号内的各项都不变;在“-”号后边添括号,括到括号内的各项都要变号。

⑶有理数的乘法法则:
① 两数相乘,同号得正,异号得负,并把绝对值相乘;
② 任何数与零相乘都得零;
③ 几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;
④ 几个有理数相乘,若其中有一个为零,积就为零。
⑷有理数的除法法则:
法则一:两个有理数相除,同号得正,异号得负,并把绝对值相除;
法则二:除以一个数等于乘以这个数的倒数。
⑸有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的给果叫做幂。
正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
⑹有理数的运算顺序:
先算乘方,再算乘除,最后算加减;如果有括号,则先算括号内,再算括号外。
⑺运算律:
①加法的交换律;
②加法的结合律;
③乘法的交换律;
④乘法的结合律;
⑤乘法对加法的分配律;
注:除法没有分配律。
3、 科学记数法:把一个数表示成a(1≤a<10)与10的幂相乘的形式。如:304000=3
4、准确数与近似数:与实际完全符合的数叫准确数,与实际接近的数叫近似数。取近似数有两种方法(1)精确到哪位,如:把84960精确到万位得(2)有效数字:从左边第一个不是零的数字起到到末位数字为止的所有数字都叫做这个数的有效数字。如:把84960保留两个有效数字得:
5、计算器的使用
1、平移变换
①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
②新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点
③连接各组对应点的线段平行且相等
2、平移的特征:
①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化。
②经过平移后,对应点所连的线段平行(或在同一直线上)且相等。

知识点整理:1、相交线
两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:
图形 顶点 边的关系 大小关系
对顶角 ∠1与∠2 有公共顶点 ∠1的两边与∠2的两边互为反向延长线 对顶角相等即∠1=∠2
邻补角 ∠3与∠4 有公共顶点 ∠3与∠4有一条边公共,另一边互为反向延长线。 ∠3+∠4=180°
注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;
⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角
⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2、垂线
⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作:
如图所示:AB⊥CD,垂足为O
⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)
⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。
3、垂线的画法:
⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。
画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。
4、点到直线的距离
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离
记得时候应该结合图形进行记忆。
如图,PO⊥AB,同P到直线AB的距离是PO的长。PO是垂线段。PO是点P到直线AB所有线段中最短的一条。
现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用。
5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念
分析它们的联系与区别
⑴垂线与垂线段 区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度。 联系:具有垂直于已知直线的共同特征。(垂直的性质)
⑵两点间距离与点到直线的距离 区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间。 联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离。
⑶线段与距离 距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同。

2平行线
1、平行线的概念:
在同一平面内,不相交的两条直线叫做平行线,直线 与直线 互相平行,记作 ‖ 。
2、两条直线的位置关系
在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。
因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)
判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:
①有且只有一个公共点,两直线相交;
②无公共点,则两直线平行;
③两个或两个以上公共点,则两直线重合(因为两点确定一条直线)
3、平行公理――平行线的存在性与惟一性
经过直线外一点,有且只有一条直线与这条直线平行

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1.数的分类及概念
数系表:
实数
无理数(无限不循环小数)
有理数
正分数
负分数
正整数
0
负整数
(有限或无限循环性数)
整数
分数
正无理数
负无理数
说明:“分类”的原则:
1)相称(不重、不漏)
2)有标准
2.非负数:正实数与零的统称。(表为:x≥0)
│a│
(a≥0)
(a为一切实数)
常见的非负数有:
性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法
②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1。
4.相反数: ①定义及表示法
②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)
②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)
定义及表示:
奇数:2n-1
偶数:2n(n为自然数)
a(a≥0)
-a(a<0)
│a│=
7.绝对值:①定义(两种):
代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算
1. 运算法则(加、减、乘、除、乘方、开方)
2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]
分配律)
3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”
到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)
附:典型例题
1. a
x
b
已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│
=b-a.
2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。

第二章 代数式
一、 单项式
多项式
整式
分式样
有理式
无理式
代数式
重要概念
分类:
1.代数式与有理式
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独
的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式
含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式
没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)
几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,
=x, =│x│等。
4.系数与指数
区别与联系:①从位置上看;②从表示的意义上看
5.同类项及其合并
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
6.根式
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别: 、 是根式,但不是无理式(是无理数)。
7.算术平方根
⑴正数a的正的平方根( [a≥0—与“平方根”的区别]);
⑵算术平方根与绝对值
① 联系:都是非负数, =│a│
②区别:│a│中,a为一切实数; 中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
a·a…a=
n个
9.指数
⑴ ( —幂,乘方运算)
① a>0时, >0;②a<0时, >0(n是偶数), <0(n是奇数)
⑵零指数: =1(a≠0)
负整指数: =1/ (a≠0,p是正整数)
二、运算定律、性质、法则
1.分式的加、减、乘、除、乘方、开方法则
2.分式的性质
⑴基本性质: = (m≠0)
⑵符号法则:
⑶繁分式:①定义;②化简方法(两种)
3.整式运算法则(去括号、添括号法则)
4.幂的运算性质:① · = ;② ÷ = ;③ = ;④ = ;⑤
技巧:
5.乘法法则:⑴单×单;⑵单×多;⑶多×多。
6.乘法公式:(正、逆用)
(a+b)(a-b)=
(a±b) =
7.除法法则:⑴单÷单;⑵多÷单。
8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。
9.算术根的性质: = ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)
10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .
11.科学记数法: (1≤a<10,n是整数)