当前位置:首页 » 基础知识 » 七年级数学第一课知识
扩展阅读
高野健一的歌词有哪些 2024-11-16 23:29:53
零基础怎么看寄生十二宫 2024-11-16 23:27:18

七年级数学第一课知识

发布时间: 2022-06-29 15:54:55

⑴ 帮我归纳一下七年级上数学第一章有理数的内容!每一个知识点都要有!

·1 负数 定义
2、数的分类
3、数轴
4、 相反数 绝对值
5、 数的加减乘除 乘方 及混合运算
6、科学计数法 近似数

⑵ 初一数学第一课内容

北师大版 第一单元整式运算 第一课整式
目的:主要让我们认识单项式与多项式。
概念:单项式和多项式统称为整式。
单独的一个数和字母也是单项式。
单独一个非零数的次数是0。
-------

⑶ 初一数学第一课什么意思,谁能给我讲一讲

有理数用简单的来说就是:整数可以看做分母是1的分数,正整数、0、负整数、正分数,负分数都可以写成分数形式,这样的数同城为有理数。数轴要有三要素:原点、单位长度、方向。相反数:符号不同的两个数叫相反数绝对值:一个正数的绝对值是它本身,负数的绝对值是正数,0的绝对值是0(以上是初一上册)

⑷ 初一上数学第一课正数和负数全部知识点!越全越好全面追加200分

规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系
⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)
3.利用数轴表示两数大小
⑴在数轴上数的大小比较,右边的数总比左边的数大; ⑵正数都大于0,负数都小于0,正数大于负数;
⑶两个负数比较,距离原点远的数比距离原点近的数小。
4.数轴上特殊的最大(小)数
⑴最小的自然数是0,无最大的自然数; ⑵最小的正整数是1,无最大的正整数; ⑶最大的负整数是-1,无最小的负整数
5.a可以表示什么数
⑴a>0表示a是正数;反之,a是正数,则a>0; ⑵a<0表示a是负数;反之,a是负数,则a<0 ⑶a=0表示a是0;反之,a是0,,则a=0
6.数轴上点的移动规律
根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。
相反数
⒈相反数
只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。 注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负; ⑶0的相反数是它本身;相反数为本身的数是0。
2.相反数的性质与判定
⑴任何数都有相反数,且只有一个;
⑵0的相反数是0;
⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0

3.相反数的几何意义
在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应

点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。 说明:在数轴上,表示互为相反数的两个点关于原点对称。
4.相反数的求法
⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);
⑵求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b); ⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5)
5.相反数的表示方法
⑴一般地,数a 的相反数是-a ,其中a是任意有理数,可以是正数、负数或0。 当a>0时,-a<0(正数的相反数是负数) 当a<0时,-a>0(负数的相反数是正数) 当a=0时,-a=0,(0的相反数是0)
6.多重符号的化简
多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。
绝对值
⒈绝对值的几何定义
一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
2.绝对值的代数定义
⑴一个正数的绝对值是它本身; ⑵一个负数的绝对值是它的相反数; ⑶0的绝对值是0.
可用字母表示为:
①如果a>0,那么|a|=a; ②如果a<0,那么|a|=-a; ③如果a=0,那么|a|=0。
可归纳为①:a≥0,<═> |a|=a (非负数的绝对值等于本身;绝对值等于本身的数是非负数。) ②a≤0,<═> |a|=-a (非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)
3.绝对值的性质
任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即⑴0的绝对值是0;绝对值是0的数是0.即:a=0 <═> |a|=0;
⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;
⑶任何数的绝对值都不小于原数。即:|a|≥a;
⑷绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a; ⑸互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;
⑹绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;
⑺若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。
(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)
4.有理数大小的比较
⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;

⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。
5.绝对值的化简
①当a≥0时, |a|=a ; ②当a≤0时, |a|=-a
6.已知一个数的绝对值,求这个数
一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。
有理数的加减法
1.有理数的加法法则
⑴同号两数相加,取相同的符号,并把绝对值相加;
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; ⑶互为相反数的两数相加,和为零; ⑷一个数与零相加,仍得这个数。
2.有理数加法的运算律 ⑴加法交换律:a+b=b+a
⑵加法结合律:(a+b)+c=a+(b+c)
在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律: ①互为相反数的两个数先相加——“相反数结合法”; ②符号相同的两个数先相加——“同号结合法”; ③分母相同的数先相加——“同分母结合法”; ④几个数相加得到整数,先相加——“凑整法”; ⑤整数与整数、小数与小数相加——“同形结合法”。
3.加法性质
一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。即: ⑴当b>0时,a+b>a ⑵当b<0时,a+b<a ⑶当b=0时,a+b=a
4.有理数减法法则
减去一个数,等于加上这个数的相反数。用字母表示为:a-b=a+(-b)。
5.有理数加减法统一成加法的意义
在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。
在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。如:

(-33)-(-18)+(-15)-(+1)+(+23)
原式=-33+(+18)+(-15)+(-1)+(+23) (将减法转换成加法)
=-33+18-15-1+23 (省略加号和括号)
=(-33-15-1)+(18+23) (把符号相同的加数相结合) =-49+41 (运用加法法则一进行运算)
=-8 (运用加法法则二进行运算)
Ⅱ.把和为整数的加数相结合 (凑整法) (+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)
原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8) (将减法转换成加法)
=6.6-5.2+3.8-2.6-4.8 (省略加号和括号)
=(6.6-2.6)+(-5.2-4.8)+3.8 (把和为整数的加数相结合)
=4-10+3.8 (运用加法法则进行运算)
=7.8-10 (把符号相同的加数相结合,并进行运算) =-2.2 (得出结论)
Ⅲ.把分母相同或便于通分的加数相结合(同分母结合法) -5
3-2
1+43
-52
+21
-87

原式=(-53-52)+(-21+21)+(+43-8
7
)
=-1+0-81

=-181

Ⅳ.既有小数又有分数的运算要统一后再结合(先统一后结合) (+0.125)-(-34
3)+(-38
1)-(-103
2)-(+1.25) 原式=(+
8
1)+(+343
)+(-381
)+(+103
2
)+(-1
4
1)
=81+343-381+1032-141 =(343-141)+(81-381)+1032
=221-3+103
2 =-3+1361

=1061

Ⅴ.把带分数拆分后再结合(先拆分后结合)

-3
5
1
+10
11
6
-12
22
1
+4
15
7
原式=(-3+10-12+4)+(-51+157)+(116-22
1
)
=-1+154+2211
=-1+308+3015
-307 Ⅵ.分组结合
2-3-4+5+6-7-8+9„+66-67-68+69
原式=(2-3-4+5)+(6-7-8+9)+„+(66-67-68+69)
=0
Ⅶ.先拆项后结合
(1+3+5+7„+99)-(2+4+6+8„+100)
有理数的乘除法
1.有理数的乘法法则
法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三) 法则二:任何数同0相乘,都得0; 法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数; 法则四:几个数相乘,如果其中有因数为0,则积等于0. 2.倒数
乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a²a
1=1(a≠0),就是
说a和
a1
互为倒数,即a是
a1
的倒数,
a
1
是a的倒数。
注意:①0没有倒数;
②求假分数或真分数的倒数,只要把这个分数的分子、分母点颠倒位置即可;求带分数的倒数时,先把
带分数化为假分数,再把分子、分母颠倒位置; ③正数的倒数是正数,负数的倒数是负数。(求一个数的倒数,不改变这个数的性质); ④倒数等于它本身的数是1或-1,不包括0。
3.有理数的乘法运算律
⑴乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。即ab=ba
⑵乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。即(ab)c=a(bc). ⑶乘法分配律:一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在把积相加。即a(b+c)=ab+ac 4.有理数的除法法则

(1)除以一个不等0的数,等于乘以这个数的倒数。
(2)两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0
5.有理数的乘除混合运算
(1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
(2)有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。
有理数的乘方
1.乘方的概念
求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在 na 中,a 叫做底数,n 叫做指数。 2.乘方的性质
(1)负数的奇次幂是负数,负数的偶次幂的正数。
(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。
有理数的混合运算
做有理数的混合运算时,应注意以下运算顺序: 1.先乘方,再乘除,最后加减;
2.同级运算,从左到右进行;
3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。

⑸ 初一上学期数学知识点归纳

初中数学宝典,你知道学习数学最重要的是什么吗?

在初中学习数学这们课程的时候很多的学生都是比较烦恼的,因为这们课程是非常难的,并且难点非常多,很多的学生在刚开始学习的时候还可以更得上,但是过一段时间之后就会变得非常的吃力,那么你知道初中数学宝典是什么吗?我们来了解一下吧!

复习知识点

以上就是初中数学宝典的内容,当学习吃力的时候可以先复习一下之前的内容,当然这个时候之前记得笔记就可以用来复习了,这样可以更好的帮助我们学习后期的内容,并且可以改善学习吃力的问题.

⑹ 急求2010年初一上册数学人教版第一课正数与负数的详细内容 好的加分

我们在生活、生产中,经常遇到相反意义的量。如零上3度和零下6度;前进6米和后退6米;小学使用的地图上珠穆朗玛峰和吐鲁番盘地的标高等。再用小学里学过的这些量表示还是不够的,因此就有了用正数、负数来表示这些相反意义上的量。本节正数和负数是我们以后学习中用到的最多的量,也是学习初中数学的基础。一、知识要点突破
知识要点一:正数、负数的定义
正数、负数表示具有相反意义的量。如果规定向东为正,那么向西就为负。注意:1.负数前面的“—”好不能省略,否则就变成正数了。
2.对于正数和负数,不能简单地理解为:带“+”好的数是正数,带“—”号的数是负数。例如:—a不一定是负数。
知识要点二:0的意义
我们在小学“0”仅表示“没有”或“空位”。但是引入负数后,“0”具有了更加丰富的意义。比如“0”可以是正数、负数的分界线。
知识要点三:正数、负数表示具有相反意义的量在实际中的应用
因为在实际生活中需要简明地表示一些具有相反意义的量,这时我们规定一个标准,比标准多的为正数,比标准少的为负数。注意:题目中没有指名哪个量用正数表示,哪个量用负数表示,习惯把“前进、上升、收入、零上、增加、超额、多”等具有相反意义的量作为负数。
1.
正数与负数是实际需要而产生的
正数和负数是根据实际需要而产生的,随着知识面的拓宽,小学学过的自然数、分数和小数已不能满足实际需要,比如一些具有相反意义的量,收入200元和支出100元,零上6℃和零下4℃等等。它们不但意义相反,而且表示一定的数量。怎么表示它们呢?我们把一种意义规定为正的,把另一种和它意义相反的量规定为负的,这样就产生了正数和负数。
2.
正数和负数的概念
(1)象5,
……这样的数叫正数。

等都是正数。
在正数前面加上“-”(读作负)号的数叫做负数。

等都是负数。
(2)零既不是正数也不是负数,它表示正数和负数的分界。
3.
有理数的有关概念
(1)整数和分数统称为有理数。
注意:整数也可以看成分母为1的分数,但为了研究方便,本章中分数就是指不包括整数的分数。
(2)整数包括正整数、零、负整数。
(3)分数包括正分数和负分数。
4.
有理数分类
(1)按正数、负数和0的关系分类:
(2)按整数和分数的关系分类:
(1)有理数分为整数和分数.整数分为正整数、零、负整数;分数分为正分数和负分数.即:

⑺ 七年级上册数学第一单元归纳知识点

七年级数学(下)期末复习知识点整理
5.1相交线

1、邻补角与对顶角

两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:

图形

顶点

边的关系

大小关系



对顶角



∠1与∠2

有公共顶点

∠1的两边与∠2的两边互为反向延长线

对顶角相等

即∠1=∠2



邻补角



∠3与∠4

有公共顶点

∠3与∠4有一条边公共,另一边互为反向延长线。

∠3+∠4=180°



注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;

⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角

⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。

⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。

2、垂线

⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

符号语言记作:

如图所示:AB⊥CD,垂足为O

⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)

⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。

3、垂线的画法:

⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。

注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。

画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。

⑻ 七年级下册数学第1章重点知识总结

(一)运用公式法:
我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。
(二)平方差公式
1.平方差公式
(1)式子: a2-b2=(a+b)(a-b)
(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。
(三)因式分解
1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反过来,就可以得到:
a2+2ab+b2 =(a+b)2
a2-2ab+b2 =(a-b)2
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点
①项数:三项
②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法
我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m +n)
做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m+ n)
=(m +n)•(a +b).
这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.
(六)提公因式法
1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.
2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:
1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于
一次项的系数.
2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:
① 列出常数项分解成两个因数的积各种可能情况;
②尝试其中的哪两个因数的和恰好等于一次项系数.
3.将原多项式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
1.把一个分式的分子与分母的公因式约去,叫做分式的约分.
2.分式进行约分的目的是要把这个分式化为最简分式.
3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.
4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.
6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.
(八)分数的加减法
1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.
2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.
3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.
4.通分的依据:分式的基本性质.
5.通分的关键:确定几个分式的公分母.
通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.
6.类比分数的通分得到分式的通分:
把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。
8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.

9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.
10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.
11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.
12.作为最后结果,如果是分式则应该是最简分式.
(九)含有字母系数的一元一次方程
1.含有字母系数的一元一次方程
引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a≠0)
在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。
含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。
为这个浪费了好多时间

⑼ 初一的数学的第一课在讲什么

一般直接讲第一章,书本的内容因版本而异
ps:北师大版 第一单元整式运算;苏科版第一章为:我们与数学同行;人教版好像改版了不过应该是实数

另外,有的老师第一节课不讲课与学生互动因老师而异

⑽ 人教版初一数学第一课是什么

第一章 丰富的图形世界
1.生活中的立体图形
2.展开与折叠
3.截一个集合体
4从不同方向看
2.生活中的平面图形
第二章 有理数及其运算
1.数怎么不够用了
2.数轴
3.绝对值
4-6.有理数加法、减法、加减混合运算
7.水位的变化
8.有理数的乘法
9.有理数的除法
10有理数的乘方
11.有理数混合运算
12计算机的使用

希望能帮助到你~