⑴ 初中数学几何怎么学
1.首先要弄清定义和定理,这些是你要用的工具,面对问题的时候得先明白自己手里有怎样的工具能解怎样的题。
2.其次就是要建立清晰的知识框架图,要将知识点怎么用的,它们之间是怎么联系的有一个比较清楚的脉络。有的同学在做随堂测试和作业的时候表现优异,综合题的测试却不顺利,就是在知识点的综合运用上存在问题,这是知识之间缺少有机结合造成的。
3.在学习几何时有一些方法:初中的数学的模型思想非常突出,不仅新知识在书中的呈现方式相对固定,解题的方法也存在相对类似的策略,如果能有自觉将类似习题、图形、结论及时整理形成基本图形、基本习题的学习习惯相信事半功倍;错题整理成集,复习自己出错的题也是学习数学的好办法;整理数学中常用的数学思想,解题的时候不迷失;将每次的作业当成考试,在心理、时间和方法上都给自己锻炼的机会,让考试变成做作业。。。。。。
几何习题就像孩子玩的迷宫游戏,可能会有很多路都走不通,但是几次尝试下来,一定会达到终点。有时,跟迷宫一样,正难则反,从结论入手会让习题变得简单。
总之几何是开始接触的时候很吓人,一旦走进了它的王国,你会发现,它非常精彩。
⑵ 初中数学知识结构(几何)
本节教材,完全可以对照线段的比较,线段的和差倍分,以及中点的意义来进行.两者是十分相似的.
2.比较两个角的大小时,把角叠合起来,一定要使两个角的顶点及一边重合,另一边落在第一条边的同旁,否则不能进行比较.这可以通过叠合两块三角尺比较角的大小的实例来说明.这和线段大小比较十分相似.
3.由于前面学过线段的大小比较和线段的和、差、倍、分.本课教学的指导思想就是运用类比联想的思维方法,引导学生利用旧知识,解决新问题.
4.在本课的练习中,在可能的情况下,将以后经常遇到的图形,提前让学生见到,为以后的学习奠定了基础.
5.在角的和、差、倍、分的计算中,由于度、分、秒的四则运算还没有讲到,因此只进行度的加、减.
教学设计示例
一、素质教育目标
(一)知识教学点
1.理解两
个角的和、差、倍、分的意义.
2.掌握角平分线的概念
3.会比较角的大小,会用量角器画一个角等于已知角.
(二)能力训练点
1.通过让学生亲自动手演示比较角的大小,画一个角等于已知角等,培养训练学生的动手操作能力.
2.通过角的和、差、倍、分的意义,角平分线的意义,进一步训练学生几何语言的表达能力及几何识图能力,培养其空间观念.
(三)德育渗透点
通过具体实物演示,对角的大小进行比较这一由感性认识上升到理性认识的过程,培养学生严谨的科学态度,对学生进行辩证唯物主义思想教育.
(四)美育渗透点
通过对角的大小比较,提高学生的鉴赏力,通过学生自己作角及角平分线,使学生进一步体会几何图形的形象直观美.
二、学法引导
1.教师教法:直观演示、尝试、指导相结合.
2.学生学法:主动参与、积极思维、动手实践相结合.
三、重点·难点·疑点及解决办法
(一)重点
角的大小比较,角平分线的意义,两个角的和、差、倍、分的意义.
(二)难点
空间观念,几何识图能力的培养.
(三)疑点
角的和、差、倍、分的意义.
(四)解决办法
通过学生主动参与,在自觉与不自觉中掌握知识点,再经过练习,解决难点和疑点.
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、一副三角板、自制胶片(软盘)、量角器.
六、师生互动活动设计
七、教学步骤
(一)明确目标
通过教学,使学生在角的比较中掌握方法,理解相应概念,并掌握角平分线的概念.
(二)整体感知
通过现代化教学手段与学生的画图相结合,完成本节教学
任务.
(三)教学过程
创设情境,引出课题
师:请同学们拿出你的一副三角板,你能说出这几个角的大小吗?
学生基本知道一副三角板各角的度数,他们可能利用度数比较,也可能通过观察,也会有同学用叠合法.这里可以让学生讨论,说出采用的比较方法,但叙述可能不规范.教师既不给予肯定也不否定,只是再提出新问题.
投影显示:两个度数相差1度以内的角,不标明度数,只凭眼观察不能确定两个角的大小.
师:对于这两个角你能说出它们哪一个大?哪一个小吗?
⑶ 初中数学重要几何关系
初中数学的话很重要,一些几何关系都是一些评选,跟处理器的问题,还有一些原。
⑷ 初中数学几何知识点
1.过两点有且只有一条直线
2.两点之间线段最短
3.同角或等角的补角相等
4.同角或等角的余角相等
5.过一点有且只有一条直线和已知直线垂直
⑸ 初中数学几何题解题技巧
首先要明白几何就相当于是给你一些线索,破解谜题。
1要熟练掌握所有的定义,性质,判定。这是破解谜题对给出的线索延伸的最重要的一部分。
2要学会两种思想方法。顺推逆推,他们中间交汇的地方就是解题的关键。
3掌握几何的基本模型,常见模型。这样有利于你对做题时候的快速延伸,看到题目的本质。
4做题时很重要的一点就是要学会去标题目中的条件并快速延伸。因为这样的话,所见即所得,不用把所有的过程在脑海中去综合
5去总结。练习的过程中,看自己做的快的,为什么做的快,做不出来的去看一下,哪些方面的问题。
⑹ 数学几何(初中知识)
因为是矩形,对角线长相等,四个小三角形的周长和=13×4+矩形周长=86,所以周长为34
⑺ 初中数学几何
精英辅导学校初中几何知识内容 1、等角的补角相等,等角的余角相等。2、对顶角相等。 3、平行线的判定: 同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,...
⑻ 初中数学几何主要知识
初中七年级几何知识
1、 过两点有且只有一条直线
2、 两点之间线段最短 。
3、 同角或等角的补角相等。
4 、同角或等角的余角相等 。
5、 过一点有且只有一条直线和已知直线垂直 。
6、 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 、平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8、 如果两条直线都和第三条直线平行,这两条直线也互相平行
9、 同位角相等,两直线平行
10、 内错角相等,两直线平行
11、 同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、 两直线平行,内错角相等
14、 两直线平行,同旁内角互补
15、 定理 三角形两边的和大于第三边
16、 推论 三角形两边的差小于第三边
17、 三角形内角和定理 三角形三个内角的和等于180°
18、 推论1 直角三角形的两个锐角互余
19、 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20、 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21、 全等三角形的对应边、对应角相等
22、边角边公理(SAS): 有两边和它们的夹角对应相等的两个三角形全等
23、 角边角公理( ASA):有两角和它们的夹边对应相等的两个三角形全等
24、 推论(AAS): 有两角和其中一角的对边对应相等的两个三角形全等
25、 边边边公理(SSS) 有三边对应相等的两个三角形全等
26、 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 、定理1 在角的平分线上的点到这个角的两边的距离相等
28、 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 、角的平分线是到角的两边距离相等的所有点的集合
30 、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 、推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 、推论1 三个角都相等的三角形是等边三角形
36 、推论 2 有一个角等于60°的等腰三角形是等边三角形
37 、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 、直角三角形斜边上的中线等于斜边上的一半
39 、定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 、定理1 关于某条直线对称的两个图形是全等形
43 、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2 ,那么这个三角形是直角三角形
48、定理 四边形的内角和等于360°
49、四边形的外角和等于360°
⑼ 平面几何知识点初中
知识点一 相交线和平行线
1.定理与性质
对顶角的性质:对顶角相等。
2.垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
3.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
4.平行线的性质:
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
5.平行线的判定:
判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
知识点二 三角形
一、三角形相关概念
1.三角形的概念 由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形
要点:①三条线段;②不在同一直线上;③首尾顺次相接.
2.三角形中的三种重要线段
(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.
(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.
(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.
二、三角形三边关系定理
①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b.
②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a.
注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可
三、三角形的稳定性
三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.
四、三角形的内角
结论1:三角形的内角和为180°.表示: 在△ABC中,∠A+∠B+∠C=180°
结论2:在直角三角形中,两个锐角互余.
注意:①在三角形中,已知两个内角可以求出第三个内角
如:在△ABC中,∠C=180°-(∠A+∠B)
②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.
如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数.
五、三角形的外角
1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角.
2.性质:
①三角形的一个外角等于与它不相邻的两个内角的和.
②三角形的一个外角大于与它不相邻的任何一个内角.
③三角形的一个外角与与之相邻的内角互补
六、多边形
①多边形的对角线条对角线;②n边形的内角和为(n-2)×180°;③多边形的外角和为360°
知识点三 全等三角形
一、全等三角形
1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;
即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质
(1)全等三角形对应边相等;(2)全等三角形对应角相等;
3、全等三角形的判定方法
(1)三边对应相等的两个三角形全等。(SSS)
(2)两角和它们的夹边对应相等的两个三角形全等。(ASA)
(3)两角和其中一角的对边对应相等的两个三角形全等。(AAS)
(4)两边和它们的夹角对应相等的两个三角形全等。(SAS)
(5)斜边和一条直角边对应相等的两个直角三角形全等。(HL)
4、角平分线的性质及判定
性质:角平分线上的点到这个角的两边的距离相等
判定:到一个角的两边距离相等的点在这个角平分线上
二、轴对称图形
(一)基本定义
1.轴对称图形
如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.折叠后重合的点是对应点,叫做对称点.
2.线段的垂直平分线
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线
3.轴对称变换
由一个平面图形得到它的轴对称图形叫做轴对称变换.
4.等腰三角形
有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.
5.等边三角形
三条边都相等的三角形叫做等边三角形.
(二)性质
1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.
2.线段垂直平分钱的性质
线段垂直平分线上的点与这条线段两个端点的距离相等.
3.(1)点P(x,y)关于x轴对称的点的坐标为P′(x,-y).
(2)点P(x,y)关于y轴对称的点的坐标为P″(-x,y).
4.等腰三角形的性质
(1)等腰三角形的两个底角相等(简称“等边对等角”).
(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.
(4)等腰三角形两腰上的高、中线分别相等,两底角的平分线也相等.
(5)等腰三角形一腰上的高与底边的夹角是顶角的一半。
(6)等腰三角形顶角的外角平分线平行于这个三角形的底边.
5.等边三角形的性质
(1)等边三角形的三个内角都相等,并且每一个角都等于60°.
(2)等边三角形是轴对称图形,共有三条对称轴.
(3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合.
(三)有关判定
1.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
2.如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).
3.三个角都相等的三角形是等边三角形.
4.有一个角是60°的等腰三角形是等边三角形.
知识点四 勾股定理
1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么
a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方
勾:直角三角形较短的直角边
股:直角三角形较长的直角边
弦:斜边
勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。
2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。)
*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13
3. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。(经典直角三角形:勾三、股四、弦五)
其他方法:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
用它判断三角形是否为直角三角形的一般步骤是:
(1)确定最大边(不妨设为c);
(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;
若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);
若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)
4.注意:(1)直角三角形斜边上的中线等于斜边的一半
(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
5. 勾股定理的作用:
(1)已知直角三角形的两边求第三边。
(2)已知直角三角形的一边,求另两边的关系。
(3)用于证明线段平方关系的问题。
(4)利用勾股定理,作出长为的线段
6.勾股定理的证明
勾股定理的证明方法很多,常见的是拼图的方法