① 初中数学知识点有哪些呢
初中数学知识点如下:
1、第1章《有理数》主要知识点有:有理数概念、相反数、绝对值、有理数加减乘除运算、科学计数法。
2、第2章《整式的加减》主要知识点:单项式、多项式、整式、同类项、去括号法则、整式的加减运算。
3、第3章《一元一次方程》主要知识点:方程及一元一次方程概念、等式的性质、解一元一次方程、应用一元一次方程解决实际问题。
4、第4章《几何图形初步》主要知识点:直线、射线、线段,角的有关概念、角的单位及角度制,余角、补角等。
5、第5章《相交线与平行线》主要知识点:邻补角、对顶角,垂线及其性质,同位角、内错角、同旁内角,平行线的判定与性质,命题、定理、证明。
6、第6章《实数》主要知识点:算数平方根、平方根、立方根,无理数、实数概念,实数的性质及运算。
7、第7章《平面直角坐标系》主要知识点:有序数对,点的坐标,用坐标表示平移。
8、第8章《二元一次方程组》主要知识点:二元一次方程及解的定义,二元一次方程组的定义及其解,代入消元和加减消元解二元一次方程组,实际问题与二元一次方程组。
② 初中数学常考知识点有哪些
1、一元二次方程的基本概念
一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0)。直角坐标系与点的位置,特殊三角函数值,圆的基本性质,直线与圆的位置关系等等。
2、一元二次方程
只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程
。一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0)。其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。
3、特殊三角函数
特殊三角函数值一般指在30°,45°,60°等角的三角函数值。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。cos30°=1,tan45°=1。
4、圆的基本性质
半圆或直径所对的圆周角是直角。
任意一个三角形一定有一个外接圆。
在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
在同圆或等圆中,相等的圆心角所对的弧相等。
同弧所对的圆周角等于圆心角的一半。
同圆或等圆的半径相等。
过三个点一定可以作一个圆。
长度相等的两条弧是等弧。
在同圆或等圆中,相等的圆心角所对的弧相等。
经过圆心平分弦的直径垂直于弦。
③ 初中数学知识点有哪些
初中数学知识点有:
1、实数的运算顺序是乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。
2、代数式是用运算符号把数或表示数的字母连结而成的式子,叫代数式。单独一个数或者一个字母也是代数式。
3、一个单项式中,所有字母的指数叫做这个单项式的次数。
4、整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。
5、方程的解是使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。
④ 数学初中全部重要知识点是什么
如下:
1、圆:圆的标准方程(x-a)2+(y-b)2=r2。再知道圆点和半价的情况下使用标准方程列出圆的函数表达式是比较直接的。
2、二次函数(简称抛物线):函数表达式:y=ax2+bx+c(a≠0);二次函数的几个重要性质必须熟记。
3、概率:概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数。
4、三角形相似:我对三角形相似的理解是这样的,你把三角形方大或者缩小。那么前后这两个图形就叫相似。
5、一元二次方程:表达式ax2+bx+c=0(a≠0)。其实就是二次函数的变形,二次函数把y等于0时对求x的解。
与圆相关的公式:
1、圆面积:S=πr²,S=π(d/2)²。(d为直径,r为半径)。
2、半圆的面积:S半圆=(πr^2)/2。(r为半径)。
3、圆环面积:S大圆-S小圆=π(R^2-r^2)(R为大圆半径,r为小圆半径)。
4、圆的周长:C=2πr或c=πd。(d为直径,r为半径)。
5、半圆的周长:d+(πd)/2或者d+πr。(d为直径,r为半径)。
6、扇形所在圆的面积除以360再乘以扇形圆心角的角度n,如下:
S=n/360×πr²。
S=πr²×L/2πr=Lr/2(L为弧长,r为扇形半径)。
⑤ 初中数学七年级到九年级的所有知识点 要具体一点的
1、不等式
(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c,a-c>b-c。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即:如果a>b,并且c>0,那么ac>bc。
2、不等式的解集
能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式。
不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同
3、二次函数的一般式为:y=ax²+bx+c(a≠0)。
4、一元一次方程的解法
①去分母:去分母是指等式两边同时乘以分母的最小公倍数。
②去括号:括号前是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变。括号前是“-”,把括号和它前面的"-"去掉后,原括号里各项的符号都要改变。(改成与原来相反的符号。
③移项:把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。
5、圆的对称性
①圆是轴对称图形,它的对称轴是直径所在的直线。
②圆是中心对称图形,它的对称中心是圆心。
③圆是旋转对称图形。
⑥ 初中数学知识点一共有多少个
摘要 初中数学基本上学代数及平面几何,代数范畴学有理数无理数,平方根,立方根一元一次方程,分式方程,二元一次方程组,一元一次不等式。一次函数,反比例函数,二次函数。平面几何为相交线,平行线的证明,全等三角形的证明,圆的证明等
⑦ 初中数学有哪些知识点
考点1
相似三角形的概念、相似比的意义、画图形的放大和缩小。
考核要求:
(1)理解相似形的概念;
(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点2
平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点3
相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点4
相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点5
三角形的重心
考核要求:知道重心的定义并初步应用。
考点6
向量的有关概念
考点7
向量的加法、减法、实数与向量相乘、向量的线性运算
考核要求:掌握实数与向量相乘、向量的线性运算
考点8
锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考点9
解直角三角形及其应用
考核要求:
(1)理解解直角三角形的意义;
(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
考点10
函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数
考核要求:
(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;
(2)知道常值函数;
(3)知道函数的表示方法,知道符号的意义。
考点11
用待定系数法求二次函数的解析式
考核要求:
(1)掌握求函数解析式的方法;
(2)在求函数解析式中熟练运用待定系数法。
注意求函数解析式的步骤:一设、二代、三列、四还原。
考点12
画二次函数的图像
考核要求:
(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像
(2)理解二次函数的图像,体会数形结合思想;
(3)会画二次函数的大致图像。
考点13
二次函数的图像及其基本性质
考核要求:
(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;
(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。
注意:
(1)解题时要数形结合;
(2)二次函数的平移要化成顶点式。
考点14
圆心角、弦、弦心距的概念
考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。
考点15
圆心角、弧、弦、弦心距之间的关系
考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。
考点16
垂径定理及其推论
垂径定理及其推论是圆这一板块中最重要的知识点之一。
考点17
直线与圆、圆与圆的位置关系及其相应的数量关系
直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。
考点18
正多边形的有关概念和基本性质
考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。
考点19
画正三、四、六边形。
考核要求:能用基本作图工具,正确作出正三、四、六边形。
考点20
确定事件和随机事件
考核要求:
(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;
(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点21
事件发生的可能性大小,事件的概率
考核要求:
(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;
(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;
(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。
注意:
(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;
(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。
考点22
等可能试验中事件的概率问题及概率计算
考核要求:
(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;
(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;
(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。
注意:
(1)计算前要先确定是否为可能事件;
(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。
考点23
数据整理与统计图表
考核要求:
(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;
(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。
考点24
统计的含义
考核要求:
(1)知道统计的意义和一般研究过程;
(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。
考点25
平均数、加权平均数的概念和计算
考核要求:
(1)理解平均数、加权平均数的概念;
(2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。
考点26
中位数、众数、方差、标准差的概念和计算
考核要求:
(1)知道中位数、众数、方差、标准差的概念;
(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。
注意:
(1)当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;
(2)求中位数之前必须先将数据排序。
考点27
频数、频率的意义,画频数分布直方图和频率分布直方图
考核要求:
(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;
(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。
考点28
中位数、众数、方差、标准差、频数、频率的应用
考核要求:
(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;
(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;
(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。
⑧ 数学初中全部重要知识点有哪些
数学初中重要知识点有:
1、过两点有且只有一条直线。
2、两点之间线段最短。
3、同角或等角的补角相等。
4、同角或等角的余角相等。
5、过一点有且只有一条直线和已知直线垂直。
6、直线外一点与直线上各点连接的所有线段中,垂线段最短。
7、平行公理经过直线外一点,有且只有一条直线与这条直线平行。
8、如果两条直线都和第三条直线平行,这两条直线也互相平行。
9、同位角相等,两直线平行。
10、内错角相等,两直线平行。
11、同旁内角互补,两直线平行。
12、两直线平行,同位角相等。
13、性质定理:在垂直平分线上的点到该线段两端点的距离相等。
14、判定定理:到线段2端点距离相等的点在这线段的垂直平分线上。
15、角平分线:把一个角平分的射线叫该角的角平分线。
⑨ 初中数学知识归纳
初中数学宝典,你知道学习数学最重要的是什么吗?
在初中学习数学这们课程的时候很多的学生都是比较烦恼的,因为这们课程是非常难的,并且难点非常多,很多的学生在刚开始学习的时候还可以更得上,但是过一段时间之后就会变得非常的吃力,那么你知道初中数学宝典是什么吗?我们来了解一下吧!
复习知识点
以上就是初中数学宝典的内容,当学习吃力的时候可以先复习一下之前的内容,当然这个时候之前记得笔记就可以用来复习了,这样可以更好的帮助我们学习后期的内容,并且可以改善学习吃力的问题.
⑩ 涵数学初中知识点有哪些
数学初中知识点如下:
1、一元二次方程:只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程 。2、公式法:就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c。
3、利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”。
4、绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
5、两数相乘,同号得正,异号得负,并把绝对值相乘。