当前位置:首页 » 基础知识 » 数学手抄报关于圆的知识图片
扩展阅读
地理知识歌词有哪些 2024-11-17 03:46:29
浙江学历教育如何报名 2024-11-17 03:35:15

数学手抄报关于圆的知识图片

发布时间: 2022-06-28 10:11:33

A. 奥运与数学的手抄报,字少,要图

奥运与数学:

我们知道很多比赛需要计时,

比如在游泳比赛中我们就能看到数学中时、分、秒的知识。

田径比赛的跑道也很有学问,

像400米起跑时,运动员并不在同一条起跑线上,这里就有数学中圆的周长的知识。

有些比赛是有比分的,比如篮球比赛几比几,就是数学中比的知识。

比赛中会出现很多数,比如运动员的号码是整数,

射击的环数会精确到小数,

另外我们经常听到的1/8决赛、1/4决赛就是分数。

赛场还有很多名数。比如说200米、100千克等等。

有些比赛的成绩需要求平均数,这里就既有计算的知识,又有求平均数的知识。

其实一些比赛的赛制也是很有学问的。循环赛制,淘汰赛制,这会涉及数学中组合的知识。

B. 帮我发一些六年级下册数学圆的知识,做一个手抄报。谢谢.

圆的有关性质
一,〖知识点〗圆、圆的对称性、点和圆的位置关系、不在同一直线上的三点确定一个圆、三角形的外接圆、垂径定理逆定理、圆心角、弧、弦、弦心距之间的关系、圆周角定理、圆内接四边形的性质
生活中的圆
--------------------------------------------------------------------------------
1.
车轮是圆的,不然车子会颠簸。
2.
同样长的线围成的图形,圆的面积最大,所以,圆的水桶装水更多。

C. 关于圆的手抄报,写什么内容呢,求助,明天就要交啦

圆是一种几何图形。当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。根据定义,通常用圆规来画圆。 圆周率,一般以π来表示,是一个在数学及物理学普遍存在的数学常数。它定义为圆形之周长与直径之比。它也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学上,π可以严格地定义为满足sin(x) = 0的最小正实数x。
π 约等于(精确到小数点后第100位)
祖冲之( 公元429年—公元500年)是我国杰出的数学家,科学家。南北朝时期人,汉族人,字文远。生于宋文帝元嘉六年,卒于齐昏侯永元二年。祖籍范阳郡遒县(今河北涞水县)。为避战乱,祖冲之的祖父祖昌由河北迁至江南。祖昌曾任刘宋的“大匠卿”,掌管土木工程;祖冲之的父亲也在朝中做官。祖冲之从小接受家传的科学知识。青年时进入华林学省,从事学术活动。一生先后任过南徐州(今镇江市)从事史、公府参军、娄县(今昆山市东北)令、谒者仆射、长水校尉等官职。其主要贡献在数学、天文历法和机械三方面。

D. 关于圆的手抄报,写什么内容呢,求助,明

圆是一种几何图形.当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆.根据定义,通常用圆规来画圆.圆周率,一般以π来表示,是一个在数学及物理学普遍存在的数学常数.它定义为圆形之周长与直径之比.它也等于圆形之面积与半径平方之比.是精确计算圆周长、圆面积、球体积等几何形状的关键值.在分析学上,π可以严格地定义为满足sin(x) = 0的最小正实数x.
π 约等于(精确到小数点后第100位)
祖冲之( 公元429年—公元500年)是我国杰出的数学家,科学家.南北朝时期人,汉族人,字文远.生于宋文帝元嘉六年,卒于齐昏侯永元二年.祖籍范阳郡遒县(今河北涞水县).为避战乱,祖冲之的祖父祖昌由河北迁至江南.祖昌曾任刘宋的“大匠卿”,掌管土木工程;祖冲之的父亲也在朝中做官.祖冲之从小接受家传的科学知识.青年时进入华林学省,从事学术活动.一生先后任过南徐州(今镇江市)从事史、公府参军、娄县(今昆山市东北)令、谒者仆射、长水校尉等官职.其主要贡献在数学、天文历法和机械三方面.

E. 要做一个“圆的认识“手抄报,有哪个学霸愿意给我指点一下

先在纸上写一个大的标题,然后把圆的定义抄上去,再把圆和其他图形的关系写上以及一些关于圆的知识写上,然后再在旁边画上几个圆

F. 数学手抄报,要图文并茂的那种

第一写关于数学的名言
罗素说:“数学是符号加逻辑”

毕达哥拉斯说:“数支配着宇宙”

哈尔莫斯说:“数学是一种别具匠心的艺术”

米斯拉说:“数学是人类的思考中最高的成就”

培根(英国哲学家)说:“数学是打开科学大门的钥匙”

布尔巴基学派(法国数学研究团体)认为:“数学是研究抽象结构的理论”

黑格尔说:“数学是上帝描述自然的符号”

魏尔德(美国数学学会主席)说:“数学是一种会不断进化的文化”

柏拉图说:“数学是一切知识中的最高形式”

考特说:“数学是人类智慧皇冠上最灿烂的明珠”
第二写关于数学的意义
数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。
第三写关于数学的小故事
数学名人小故事-康托尔
由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。
真金不怕火炼,康托尔的思想终于大放光彩。1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。1918年1月6日,康托尔在一家精神病院去世。
第四,可以写关于数学的笑话
小明小学数学考试,回来后他妈问他考得怎么样.小明说:"我基本上会做,但有一题3乘7,我怎么也想不出来.最后打铃了,我不管三七二十一就写了个18."
奶奶:“1+2等于几?”

孙子:“等于3。”

奶奶:“答对了,因此你会得到3块糖。”

孙子:“早知道是这样,我就说是等于5就好啦!”
第五,可以写动物中的数学家
蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成,组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料,蜂房的巢壁厚0.073毫米,误差极少。
丹顶鹤总是成群结队迁飞,而且排成“人”字开。“人”字形的角度是110度,更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契?”
蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺和圆规也很难画出像蜘蛛那样匀称的图案。

冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。
真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学业家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。

G. 发一些图片给我,关于数学手抄报的版面设计!谢谢!

阿拉伯数字

在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗?

这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做"阿拉伯数字",因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。

现在,阿拉伯数字已成了全世界通用的数字符

九九歌

九九歌就是我们现在使用的乘法口诀。
远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多着作中,都有关于九九歌的记载。最初的九九歌是从"九九八十一"起到"二二如四"止,共36句。因为是从"九九八十一"开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到"一一如一"。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从"一一如一"起到"九九八十一"止。
现在我国使用的乘法口诀有两种,一种是45句的,通常称为"小九九";还有一种是81句的,通常称为"大九九"。

数学符号的起源

数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。
例如加号曾经有好几种,现在通用"+"号。
"+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。
"-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。
到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。
乘号曾经用过十几种,现在通用两种。一个是"×",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"×"号象拉丁字母"X",加以反对,而赞成用"· "号。他自己还提出用"п"表示相乘。可是这个符号现在应用到集合论中去了。
到了十八世纪,美国数学家欧德莱确定,把"×"作为乘号。他认为"×"是"+"斜起来写,是另一种表示增加的符号。
"÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所着的《代数学》里,才根据群众创造,正式将"÷"作为除号。
十六世纪法国数学家维叶特用"="表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。
1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等。
大于号"〉"和小于号"〈",是1631年英国着名代数学家赫锐奥特创用。至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了。大括号"{ }"和中括号"[ ]"是代数创始人之一魏治德创造的。

奇妙的圆形

圆形,是一个看来简单,实际上是很奇妙的圆形。
古代人最早是从太阳,从阴历十五的月亮得到圆的概念的。一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很圆。
以后到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。
当人们开始纺线,又制出了圆形的石纺缍或陶纺缍。
古代人还发现圆的木头滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。
大约在6000年前,美索不达米亚人,做出了世界上第一个轮子--圆的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。
会作圆,但不一定就懂得圆的性质。古代埃及人就认为:圆,是神赐给人的神圣图形。一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:"一中同长也"。意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。
圆周率,也就是圆周与直径的比值,是一个非常奇特的数。
《周髀算经》上说"径一周三",把圆周率看成3,这只是一个近似值。美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。
魏晋时期的刘徽于公元263年给《九章算术》作注。他发现"径一周三"只是圆内接正六边形周长和直径的比值。他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。他算到圆内接正3072边形的圆周率,π= 3927/1250。刘徽已经把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。
祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在3.1415926与3.1415927之间,是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。
在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。
现在有了电子计算机,圆周率已经算到了小数点后一千万以上了。

从一加到一百

七岁时高斯进了 St. Catherine小学。大约在十岁时,老师在算数课上出了一道难题:"把 1到 100的整数写下来,然后把它们加起来!"每当有考试时他们有如下的习惯:第一个做完的就把石板﹝当时通行,写字用﹞面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:“答案在这儿!”其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完后,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。

勾股定理
勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。
这个定理在中国又称为"商高定理",在外国称为"毕达哥拉斯定理"。为什么一个定理有这么多名称呢?商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学着作《周髀算经》中记录着商高同周公的一段对话。商高说:"…故折矩,勾广三,股修四,经隅五。"什么是"勾、股"呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为"勾",下半部分称为"股"。商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成"勾三股四弦五"。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫作"商高定理"。 毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年。希腊另一位数学家欧几里德(Euclid,是公元前三百年左右的人)在编着《几何原本》时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为"毕达哥拉斯定理",以后就流传开了。
关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也。""此数"指的是"勾三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。
勾股定理的应用非常广泛。我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:"禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。"这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。

无声胜有声
在数学上也不乏无声胜有声这种意境。1903年,在纽约的一次数学报告会上,数学家科乐上了讲台,他没有说一句话,只是用粉笔在黑板上写了两数的演算结果,一个是2的67次方-1,另一个是193707721×761838257287,两个算式的结果完全相同,这时,全场爆发出经久不息的掌声。这是为什么呢?
因为科乐解决了两百年来一直没弄清的问题,即2是67次方-1是不是质数?现在既然它等于两个数的乘积,可以分解成两个因数,因此证明了2是67次方-1不是质数,而是合数。
科尔只做了一个简短的无声的报告,可这是他花了3年中全部星期天的时间,才得出的结论。在这简单算式中所蕴含的勇气,毅力和努力,比洋洋洒洒的万言报告更具魅力。

为什么时间和角度的单位用六十进位制 时间的单位是小时,角度的单位是度,从表面上看,它们完全没有关系。可是,为什么它们都分成分、秒等名称相同的小单位呢?为什么又都用六十进位制呢? 我们仔细研究一下,就知道这两种量是紧密联系着的。原来,古代人由于生产劳动的需要,要研究天文和历法,就牵涉到时间和角度了。譬如研究昼夜的变化,就要观察地球的自转,这里自转的角度和时间是紧密地联系在一起的。因为历法需要的精确度较高,时间的单位"小时"、角度的单位"度"都嫌太大,必须进一步研究它们的小数。时间和角度都要求它们的小数单位具有这样的性质:使1/2、1/3、1/4、1/5、1/6等都能成为它的整数倍。以1/60作为单位,就正好具有这个性质。譬如:1/2等于30个1/60,1/3等于20个1/60,1/4等于15个1/60…… 数学上习惯把这个1/60的单位叫做"分",用符号"′"来表示;把1分的1/60的单位叫做"秒",用符号"″"来表示。时间和角度都用分、秒作小数单位。 这个小数的进位制在表示有些数字时很方便。例如常遇到的1/3,在十进位制里要变成无限小数,但在这种进位制中就是一个整数。 这种六十进位制(严格地说是六十退位制)的小数记数法,在天文历法方面已长久地为全世界的科学家们所习惯,所以也就一直沿用到今天。

哥德巴赫猜想 哥德巴赫(Goldbach C.,1690.3.18~1764.11.20)是德国数学家; 在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题:任何大于5的奇数都是三个素数之和。 但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是个别的检验。" 欧拉回信又提出了另一个命题:任何一个大于2的偶数都是两个素数之和。但是这个命题他也没能给予证明。现在通常把这两个命题统称为哥德巴赫猜想 二百多年来,尽管许许多多的数学家为解决这个猜想付出了艰辛的劳动,迄今为止它仍然是一个既没有得到正面证明也没有被推翻的命题。

够了吧,自己选择吧

回答人的补充 2009-08-15 10:10
一次只能一万字,而且要审核,比较慢,所以第二部分放这里

H. 四下数学手抄报

四年级下册数学的手抄报就可以根据课文的内容去编写一些信息,根据课文的一个条件,他的要求根据老师的一个要求,将一些信息整理好,具备一定的逻辑

I. 关于圆的手抄报要姿料或图片

在这里说一下圆的面积不包含圆柱计算,只算圆的表面积
π---园周率 S---面积 L---周长 r---圆半径 d----圆直径
圆的面积计算公式:S = π×r2 =3.1416×r2
圆周长计算公式:L = 2×π×r
(圆的面积说白了一点就是:半径乘于半径乘于3.14)
已知圆的面积求直径:直径:2√(面积÷园周率)
求面积例:一个单根直径为80毫米的电缆线,求其截面积
3.14×(40×40)或3.14×402
= 3.14×1600 = 5024(平方毫米)
求球的体积计算公式:4.18879×半径×半径×半径