Ⅰ 高一数学集合知识点归纳有哪些
高一数学集合知识点归纳有:
1、集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。
2、一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。
3、一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。
4、集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。
5、凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件。
Ⅱ 集合的概念知识点归纳有哪些
集合的概念和知识点归纳如下:
1、概念:
集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。
2、地位:
集合在数学领域具有无可比拟的特殊重要性。集合论的基础是由德国数学家康托尔在19世纪70年代奠定的,经过一大批科学家半个世纪的努力,到20世纪20年代已确立了其在现代数学理论体系中的基础地位,可以说,现代数学各个分支的几乎所有成果都构筑在严格的集合理论上。
3、特性:
(1)确定性:
给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。
(2)互异性:
一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。
(3)无序性:
一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。
4、表示方法:
表示集合的方法通常有四种,即列举法、描述法、图像法和符号法。
5、运算定律:
(1)交换律:A∩B=B∩A;A∪B=B∪A。
(2)结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C。
(3)分配对偶律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)。
(4)对偶律:(A∪B)^C=A^C∩B^C;(A∩B)^C=A^C∪B^C。
(5)同一律:A∪∅=A;A∩U=A。
(6)求补律:A∪A'=U;A∩A'=∅。
(7)对合律:A''=A。
(8)等幂律:A∪A=A;A∩A=A。
(9)零一律:A∪U=U;A∩∅=∅。
(10)吸收律:A∪(A∩B)=A;A∩(A∪B)=A。
集合的容斥原理(特殊情况):
card(A∪B)=card(A)+card(B)-card(A∩B)
card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)。
以上内容参考:网络-集合
Ⅲ 高一数学第一章集合的知识点
高一数学集合知识点:集合的概念、关于集合的元素的特征、元素与集合的关系、常用数集及其记法、集合的分类、集合的表示方法(自然语言法、列举法、描述法)、集合间的基本关系、集合的基本运算(交集、并集、全集、补集)。
集合运算时的基本概念:
1、并集:一般的由属于集合A或属于集合B的所有元素组成的集合称为集合A与B的并集,记作A∪B。
2、交集:一般的有属于集合A且属于集合B的所有元素组成的集合,称为集合A与B的交集,记作A∩B。
3、全集:一般的如果一个集合,还有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U。
4、补集:对于一个集合A由全集U中不属于集合A的所有元素组成的集合,称为集合A相对于全集U的补集,简称为集合A的补集。
Ⅳ 集合数学知识点有哪些
集合数学知识点有如下:
一、集合的含义与表示
1、通过实例了解集合的含义,体会元素与集合的“属于”关系。
2、能选择然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
二、集合间的基本关系
1、理解集合之间包含与相等的含义,能识别给定集合的子集。
2、在具体情境中,了解全集与空集的含义。
有限集:含有有限个元素的集合
无限集:含有无限个元素的集合
空集:不含任何元素的集合 例:{x|x2=-5}
概念:
集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素。例如全中国人的集合,它的元素就是每一个中国人。
我们通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。若x是集合S的元素,则称x属于S,记为x∈S。若y不是集合S的元素,则称y不属于S,记为y∉S。
Ⅳ 高一集合数学知识点内容有哪些
集合数学知识点有如下:
一、某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
二、通常用大写字母表示集合,用小写字母表示元素。
三、一个集合中,每个元素的地位都是相同的,元素之间是无序的。
四、集合论的基础是由德国数学家康托尔在19世纪70年代奠定的,经过一大批科学家半个世纪的努力,到20世纪20年代已确立了其在现代数学理论体系中的基础地位,可以说,现代数学各个分支的几乎所有成果都构筑在严格的集合理论上。
五、集合中元素的数目称为集合的基数,集合A的基数记作card(A)。当其为有限大时,集合A称为有限集,反之则为无限集。一般的,把含有有限个元素的集合叫做有限集,含无限个元素的集合叫做无限集。
Ⅵ 高一集合数学知识点有哪些
高一集合数学知识点:
1、集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
2、集合中的元素具有确定性、互异性和无序性。
3、集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件。
4、集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。
5、集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。
Ⅶ 高一数学集合知识点归纳有哪些
如下:
1、给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。
2、一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。
3、作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。
4、对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。
5、含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。
Ⅷ 数学集合中的所有符号及其意义
集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素.,集合可以用符号来表示,集合中的符号和意义如下:
∪ 并集
∩ 交集
⊂ A⊂B, A属于B
⊃ A⊃B, A包括B
∈ a∈A,a是A的元素
⊆ A⊆B,A不大于B
⊇ A⊇B,A不小于B
Φ 空集
R 实数
N 自然数
Z 整数
Z+正整数
Z- 负整数
Ⅸ 集合数学知识点是什么
集合数学知识点是:
1、集合的含义
某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
2、集合的表示
通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A。
3、集合的三个特性
(1)无序性
指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。
(2)互异性
指集合中的元素不能重复,A={2,2}只能表示为{2}
(3)确定性
集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。
4、子集的定义
A包含于B,有两种可能:A是B的一部分;A与B是同一集合,A=B,A、B两集合中元素都相同。反之,集合A不包含于集合B。不含任何元素的集合叫做空集,空集是任何集合的子集。
5、子集规律
有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-2个非空真子集。如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。