㈠ 1—6年级数学知识点有哪些
举例如下:
1、整数【正数、0、负数】
⑴一个物体也没有,用0表示。0和1、2、3……都是自然数。自然数是整数。
⑵最小的一位数是1,最小的自然数是0。
⑶零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。“+4”读作正四。“-4”读作负四。 +4也可以写成4。
⑷像 +4、19、+8844这样的数都是正数。像-4、-11、-7、-155这样的数都是负数。
⑸0既不是正数,也不是负数。正数都大于0,负数都小于0。
⑹通常情况下,比海平面高用正数表示,比海平面低用负数表示。
⑺通常情况下,盈利用正数表示,亏损用负数表示。
⑻通常情况下,上车人数用正数表示,下车人数用负数表示。
⑼通常情况下,收入用正数表示,支出用负数表示。
⑽通常情况下,上升用正数表示,下降用负数表示。
2、小数【有限小数、无限小数】
⑴分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
⑵整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。每相邻两个计数单位间的进率都是10。
⑶每个计数单位所占的位置,叫做数位。数位是按照一定的顺序排列的。
⑷小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
⑸根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
⑹比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。
⑺把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。
⑻求小数近似数的一般方法:
①先要弄清保留几位小数;
②根据需要确定看哪一位上的数;3用“四舍五入”的方法求得结果。
3、分数【真分数、假分数】
⑴把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,是这个分数的分数单位。
⑵两个数相除,它们的商可以用分数表示。即:a÷b=a/b(b≠0)。
⑶小数和分数的意义可以看出,小数实际上就是分母是10、100、1000…的分数。
⑷分数可以分为真分数和假分数。
⑸分子小于分母的分数叫做真分数。真分数小于1。
⑹分子大于或等于分母的分数叫做假分数。假分数大于或等于1。
⑺分子和分母只有公因数1的分数叫做最简分数。
⑻分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
⑼小数的性质和分数的基本性质一致的,应用分数的基本性质,可以通分和约分。
4、百分数【税率、利息、折扣、成数】
表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫百分率或百分比,百分数通常用“%”表示。
㈡ 六年级下册数学知识点
1、 让学生经历应用百分数的知识解决生活中一些常见的实际问题的过程,进一步理解百分数的意义,体会百分数与分数、小数的联系和区别,加深对方程思想方法的认识,提高解决相关实际问题的能力。在具体情境中理解比例的意义和基本性质,认识成正比例和反比例的量,体会不同领域数学内容的内在联系,加深对数量关系的理解。
2、 让学生通过观察、操作、实验和简单的推理,认识圆柱、圆锥的基本特征,探索并掌握圆柱、圆锥的体积公式以及圆柱表面积的计算方法;在具体情境中理解图形的放大和缩小,初步理解比例尺的意义,初步掌握用方向和距离确定物体方位的方法,并能应用这些知识和方法解决一些简单的实际问题。
3、 让学生联系对百分数意义的理解,认识扇形统计图,初步体会扇形统计图描述数据的特点,能提出并解决一些简单的问题。结合实例,初步认识众数和中位数的意义,会求一组简单数据的众数和中位数,初步体会众数和中位数和平均数等不同统计量的不同统计特点。
4、 让学生通过系统复习,进一步掌握数与代数、空间与图形、统计与概率等领域的知识和方法,进一步明确相关内容的发展线索和逻辑关联,加深对现实中的数量的理解,提高综合应用数学知识和方法的能力。
㈢ 小学六年级数学必考知识点有哪些
小学六年级数学必考知识点:
一、分数
1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。
3.分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
二、百分数
1、定义:百分数是表示一个数是另一个数的百分之几。百分数也叫做百分率或百分比。百分数通常不写成分数的形式,而在原来的分子后面加上百分号“%”来表示。例如:百分之九十,90%;百分之一百零八点五,108.5%......百分数在工农业生产、科学技术、各种实验中有着十分广泛的应用,特别是在进行调查统计、分析比较时,经常要用到百分数。
2、百分数的意义:是能在生产生活中能将事物占总体的比例形容的更加完整,让省去许多不必要的言语,简易而恰当。
三、分数除法
1、分数除法:分数除法是分数乘法的逆运算。
2、分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
四。比例
1、在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。
2、比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。因此,比和比例的意义也有所不同。
㈣ 六年级上册数学知识点
六年级数学上册期末复习要点(人教版)
第1单元 分数乘法
(二)分数乘法的意义
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
(二)分数乘法计算法则
1、分数乘整数的运算法则是:分子与整数相乘,分母不变.
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母(分子乘分子,分母乘分母)。
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c<a(b<0)。
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算
1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=bXa乘法结合律:(a×b)Xc=a×(b×c)
乘法分配律:a×(b±c)=a×b土a×c
(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)
2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。例如:a×b=1则a、b互为倒数。
3、求倒数的方法:
①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
内容比较多,完整打印版请见网络文库:人教版六年级上册数学期末知识要点
㈤ 1到6年级数学知识点有哪些
长方形周长=(长+宽)×2C=2(a+b)长方形的面积=长×宽S=ab正方形的周长=边长×4C=4a正方形的面积=边长×边长S=a^2(a的平方)平行四边形的面积=底×高S=ah三角形的面积=底×高÷2S=1/2ah梯形的面积=(上底+下底)×高÷2S=1/2(a+b)h圆的周长=直径×圆周率C=πd圆的面积=半径×半径×圆周率S=πr^2长方体的体积=长×宽×高V=abc长方体的表面积=(长×宽+长×高+宽×高)×2S=2(ab+ac+bc)正方体的体积=棱长×棱长×棱长V=a^3(a的立方)正方体的表面积=棱长×棱长×6S=6a^2圆柱体的体积=底面积×高V=sh
㈥ 六年级数学知识点
①加数+加数=和
和-一个加数=另一个加数
②被减数-减数=差
被减数-差=减数
差+减数=被减数
③因数×因数=积
积÷一个因数=另一个因数
④被除数÷除数=商
被除数÷商=除数
商×除数=被除数
除数×商+余数=被除数
.比
比的意义:两个数相除又叫作两个数的比。
根据比的意义可以求比值;求比值的方法:用前向除以后项。
比的基本性质:比的前项和后项都乘或除以相同的数(0除外)比值不变。应用比的基本性质可以化简比。
.四则混合运算
①在四则运算中,加法和减法称为第一级运算,乘法和除法称为第二级运算。
②在没有括号的算式里,如果只含有同一级运算,要从左往右一次计算;如果含有两级运算,要先做第二级运算,再做第一级运算。
③在有括号的算式里,要先算括号里面的,如果既有小括号又有中括号,要先算小括号里面的,再算中括号里面的,最后算括号外面的。
39.分数、百分数应用题
单位“1”已知,用乘法。单位“1”未知,用除法。
①求一个数是另一个数的几(百)分之几?
基本公式:前一个数÷后一个数 (比较量÷标准量)
②求一个数的几(百)分之几或几倍是多少?(单位“1”已知)
基本公式:单位“1”的量×分率=分率对应的量
③已知一个数的几(百)分之几是多少,求这个数.(单位“1”未知用除法或方程)
基本公式:分率对应的数量÷分率=单位“1”的量 或者列方程解。
④已知两个数,求一个数比另一个数多几分之几。
已知两个数,求一个数比另一个数多百分之几。
已知两个数,求一个数比另一个数少几分之几。
已知两个数,求一个数比另一个数少百分之几。
基本公式:两个数的差÷单位“1”的量(标准量
本金:存入银行的钱叫本金。利息:取款时银行多支付的钱叫利息。利率:利息与本金的百分比叫做利率。
②利息计算公式:利息=本金×时间×利率
利息税=本金×时间×利率×5%
41.四则运算定律
加法交换律:a+b=b+a,
加法结合律:(a+b)+c=a+(b+c)
乘法交换律:ab=ba,
乘法结合律:(ab)c=a(bc)
乘法分配律:(a±b)c=ac±bc
运算性质
①减法的基本性质:a-(b+c)=a-b-c
a-b-c=a-(b+c)
②除法的基本性质:a÷b÷c=a÷(b×c)
(a±b)÷c=a÷c±b÷c
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径 ?=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体的体积 =长×宽×高 V =abh
13、正方体的表面积=棱长×棱长×6 S =6a
14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a
15、圆柱的侧面积=底面圆的周长×高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、长方体(正方体、圆柱体)的体
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高 s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒积=底面积×高 V=Sh
㈦ 六年级数学上册必考知识点是什么
【常用的数量关系】
1、每份数×份数=总数; 总数÷每份数=份数 ; 总数÷份数=每份数。
2、1倍数×倍数=几倍数; 几倍数÷1倍数=倍数; 几倍数÷倍数=1倍数。
3、速度×时间=路程 ; 路程÷速度=时间 ; 路程÷时间=速度。
4、单价×数量=总价; 总价÷单价=数量 ; 总价÷数量=单价。
5、工作效率×工作时间=工作总量; 工作总量÷工作效率=工作时间。
工作总量÷工作时间=工作效率。
6、加数+加数=和; 和-一个加数=另一个加数。
7、被减数-减数=差; 被减数-差=减数; 差+减数=被减数。
8、因数×因数=积; 积÷一个因数=另一个因数。
9、被除数÷除数=商 ; 被除数÷商=除数; 商×除数=被除数。
【小学数学图形计算公式】
1、正方形(C:周长, S:面积, a:边长)。
周长=边长×4; C=4a。
面积=边长×边长; S=a×a。
2、正方体(V:体积, a:棱长)。
表面积=棱长×棱长×6; S表=a×a×6。
体积=棱长×棱长×棱长; V= a×a×a。
3、长方形(C:周长, S:面积, a:边长, b:宽 )。
周长=(长+宽)×2; C=2(a+b)。
面积=长×宽 ; S=a×b。
4、长方体(V:体积, S:面积, a:长, b:宽, h:高)。
(1)表面积=(长×宽+长×高+宽×高)×2; S=2(ab+ah+bh)。
(2)体积=长×宽×高; V=abh。
5、三角形(S:面积, a:底, h:高)。
面积=底×高÷2 ; S=ah÷2。
三角形的高=面积×2÷底 三角形的底=面积×2÷高。
6、平行四边形(S:面积, a:底, h:高)。
面积=底×高; S=ah。
7、梯形(S:面积, a:上底, b:下底, h:高)。
面积=(上底+下底)×高÷2; S=(a+b)×h÷2。
8、圆形(S:面积, C:周长,π:圆周率, d:直径, r:半径 )。
(1)周长=π×直径π=2×π×半径; C=πd=2πr。
(2)面积=π×半径×半径; S= πr2。
9、圆柱体(V:体积, S:底面积, C:底面周长, h:高, r:底面半径 )。
(1)侧面积=底面周长×高=Ch=πdh=2πrh。
(2)表面积=侧面积+底面积×2。
(3)体积=底面积×高。
10、圆锥体(V:体积, S:底面积, h:高, r:底面半径 )。
体积=底面积×高÷3。
11、总数÷总份数=平均数。
12、和差问题的公式:已知两数的和及它们的差,求这两个数各是多少的应用题,叫做和差应用题,简称和差问题。
(和+差)÷2=大数; (和-差)÷2=小数。
㈧ 六年级数学知识树
数学的知识框架,就是你们这一年的数学书里主要分为几个模块,这是主干(根据内容决定),比如说你们的目录(有主目录,次目录)就是一种框架,可以做参考
比如:六年级有2本书,你可以先写第一本书,书里有12345678个章节(我也不知道有几个章节,那几个有联系,这是打个比方,作为模板),每个章节讲得都是不同的内容,1章一般是总论,而23章中讲得联系比较大,45章节有联系,67也有联系,你就把他们之间的联系找出来,归纳一类,而后,归纳这个章节的知识点,从主要概括到最后具体的内容解释,这样就完成了
例子:
六年级数学
/ \
/ \
上册 下册
/ ! \
分别是 -- 23 45 67章的概要
知识点-- / ! \
(这是竖着画的,因为是是知识树嘛!我们现在习惯话横着的,就是总的在左边,然后从上到下竖着分,都一样,习惯而已)
可以依次向下分,我就是举个例子,具体怎么样,你可以参考你们的课本目录,而且照我的说法你的工作量会很大,这个你也可以简略写,不用分的那么细 ,因为我们做知识框架的目的就是为了方便记忆,使看的容易一些,让那个繁琐的知识点联系起来,有条理一些罢了,所以,这也是因人而异的
希望对你有所帮助!!
㈨ 六年级数学必考知识点有哪些
六年级数学必考知识点总结如下:
一、倍数与约数
最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。
二、利润
利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)。
利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
三、小数
自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414。
四、分数的倒数
找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。 则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。
五、圆周率:圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。