当前位置:首页 » 基础知识 » 物理知识讲座
扩展阅读
动漫设计类是什么专业 2024-11-17 23:13:02

物理知识讲座

发布时间: 2022-06-20 09:42:41

⑴ 物理学前沿讲座

一、曲秀荣
1、材料分类:(1)结构材料:力学性能、热学性能。(2)功能材料:热电、压电、铁电、发光
2、微观组成:状块材料、纳米材料
3、纳米特点:比面积大①高的活性 ②韧性 ③磁学性能 ④量子隧道效应
20世纪的两大话题能源环境 LETTERS
4、热电材料的优点:是绿色能源①体积小(例如:热电发电、热电制冷、发电系统) ②重量轻 ③结构简单 ④坚固耐用 ⑤无需运动部件 ⑥无磨损 ⑦无噪音 ⑧无污染 ⑨无需监控操作
5、热电材料的应用:(1)温差电池(热电芯片、手机用的电池)(2)小汽车的发电系统(3)空间站的热电能转换装置,深海作业的热电能转换装置
6、热电制冷的应用:①变协式冰箱 ②空调 ③手术刀
7、热电材料及热点效应的基础知识
①什么事热电材料?(热电材料发电效率低)
定义:一种利用固体内部载流子运动,实现热能的电能直接相互转换的功能材料
8、新材料的探索:(有哪些材料)
答: Bi Te / Sb Te 体系 PbTe体系 SiGe体系 CoSb 为代表的方钴 型热电材料 Zn Sb 金属硅化物(如 —FeSi 、MnSi 、CrSi 等) NaCo O 为代表氧化物
9、什么是热电材料?
答:热电材料也是温差材料,是一种利用固体内部载流子运动,实现热能和电能相互转化的功能材料
10、什么是热电效应?(简)
答:热电效应是电流引起的可逆热效应和温差引起的电效应的总称。
包括Seebeck效应 Peltier效应 和 Thomson效应

赛贝克 帕尔贴 汤姆逊
11、赛贝克效应:当两种不同导体构成闭合电路时,如果两个接点的温度不同,则两接点间有电动势产生,且在回路中有电流通过,即温差电现象或Seebeck效应(可能为简、填、选)
论+应 主要应用:①用采热电发电 例如:利用放射性同位素做热源给航天器空间站发电②还可利用海洋温差、太阳能等发电 ③汽车尾气等废热发电 ④可以用于偏远山村供电以及深海作业供电(论=概+应)
12、Peltier效应:当电流通过两个不同导体形成的接点时,接点处会发生放热或吸热现象,称为Peltier效应 当半导体通以电流时,两端会有温差现象出现,此现象为帕尔贴效应(应用:热电效应 用于冰箱、空调、计算机系统、手术刀等)
13、热电材料用于发电和这冷目前存在的问题是什么?解决办法有哪些?答:与常规能源相比热电转换效率低 解决办法:提高材料的热电性能①探索新材料 ②将材料低维化
14、帕Peltier的特点:体积小、重量轻、结构简单、坚固耐用、无需运动部件、无磨损、无噪音、无污染
15、热电转换装置,热电材料用于发电和制冷,存在的问题是什么及解决办法?答:热电转换效率低
一维ZnO纳米材料简介(高红)
1、半导体简介 2研究一维ZnO纳米材料的意义 3、一维ZnO纳米结构的生长
1、半导体
什么是半导体?在绝缘体和导体之间,没有明显界限
半导体的特征?对外界条件(力、热、光、电、磁、杂质等)变化非常敏感
半导体的应用:计算机芯片、发光材料、传感器
常见半导体:Si(硅)Ge(锗)ZnO(氧化锌)
2、研究一维ZnO纳米材料的意义
2.1纳米材料的定义
纳米材料:是指由纳米颗粒构成的固体材料,其中纳米颗粒的尺寸1—100纳米。包括纳米颗粒、纳米线、纳米超薄膜、夹层结构、多层膜和超晶格等材料
2.2纳米材料的效应:小尺寸效应、量子效应、表面效应
小尺寸效应:由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应
量子效应:一是纳米粒子尺寸小到某一值时,在费米能级附近的电子能级是由准连续变为离散的现象 二是纳米半导体微粒存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能级间隔变宽,出现蓝移的现象
表面效应:粒子的大小与表面原子数的关系
直径/nm 1 5 10 100
原子总数/N 30 4000 3000 300000
表面原子百分比/表面积 100 40 20 2

纳米材料的表面积大大增加,表面结构也发生很大的变化。因此,与表面状态有关的吸附、催化以及扩散等物理化学性质。
2、ZnO一维纳米材料的性质:⑴、直接带隙宽禁带半导体(3.4eV)⑵、具有高自由激子束缚能(室温60meV)⑶、紫外发光材料⑷、光电、压电、气敏、生物安全等特性⑸、一维纳米材料的特性
3、研究意义
3.1制备方法:化学气相沉积、脉冲激光沉积(经常用) 水热法

一维ZnO纳米材料的表征
3.1、形貌表征(SEM)
3.2、晶体结构表征(XRD)
3.3、微观晶格结构表征(HRTEM)
3.4、成分表征(EDX)
3.5、光学性质表征(PL,Raman)

稀土及其发光(孟庆裕)
一、什么是稀土
1.1稀土的定义
答:稀土是稀土类元素群的总称。包含钪Sc、钇Y及元素周期表的ⅢB族镧系中的镧La、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu、钆Gd、铽Gd、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu共17个元素。稀土元素的单质都属于有色金属。
⑴、传统领域:农业、冶金、石化、玻璃、陶瓷、机械加工、照明光源
⑵、高新科技领域:新型照明与显示技术、储氢技术、激光材料、光通信、精密陶瓷、高温超导、精细化学催化剂
1.2、稀土的分类:稀土元素分为“轻稀土元素”和“重稀土材料”。“轻稀土材料”指原子序数较小的钪Sc、钇Y和镧La、铈Ce、镨Pr、钕Nd、钷Pm
2.1、什么是发光
答:发光石物体内部以某种方式吸收能量后转化为光辐射的过程(概括的说,发光就是物质在热辐射之外以光的形式发射出多余的能量,而这种多余能量的发射过程具有一定的持续时间)
发光是热辐射之外的一种辐射,这种辐射的持续时间超过光的振动周期。(广播的振动周期的量级在10 秒以下,而发光的辐射期间在10 秒以上。因此,用辐射期间作为判据,很容易把发光与反射、散射这类辐射区分开来。
2.2、稀土元素的价态
答:稀土离子在固中一般呈现三价,镧系元素中的某些元素还有二价和四价
2.3、什么样离子容易变成+2价或+3价,为什么?
答:4f电子轨道全空、半充满和全充满电子的稀土离子为稳定态,如La 、Gd 、Lu 和Y ,它们结构稳定,具有光学惰性,很适合作为发光的材料的基质。而一些三价稀土离子的4f轨道中比稳定态一或二个电子为趋于稳定态,它们易失去一个电子而被氧化为+4价,而另一些三价稀土离子比稳定态少一或两个电子为趋于稳定态,它们易被还原为+2价
2.4、稀土离子发光的特点
答:对于三价稀土离子,由于4f 电子在空间上受到5s 5p 电子的屏蔽,因此,几乎不受配体的影响,故4f—4f跃迁的光谱有如下特点①光谱呈狭窄线状 ②谱线强度较低 ③跃迁概率很小,激发态寿命较长
2.5、5d到4f跃迁的特点?
答:5d—4f跃迁 =1,根据选择定则,这种跃迁是允许的,并且5d处于外层,5d—4f跃迁受晶体场影响较大,所以5d—4f跃迁发光的特点与4f—4f跃迁几乎完全相反,其光谱呈现带宽,强度较高,荧光寿命的特点
光的强度随波长的变化就叫光谱
2.6常见的稀土发光材料?
光源:日光灯 BaMg Al O Eu
Mg Al O Ce Te 特
Y O Eu 有
高压汞灯 Y(Pv)O Eu YUO En Tb
黑光灯 YPO Ce Tb MgSrBF Eu
固体光源 YAG Ge
一、纳米技术
纳米是一个尺度的量度1nm=10 m
纳米科技是和研究由尺寸在1点10 nm之间的物质组成体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术
二、纳米材料具有的基本特性
⑴、表面效应
纳米材料的表面效应是指纳米粒子的表面原子数与总原子数的比值随粒径的变小而急剧增大,引起的性质上的变化,由于纳米粒子表面原子数增多,表面原子配位数不足和高的表面能,使这些原子易与其它原子相结合而稳定下来。所以纳米材料具有很高的化学活性。
⑵、小尺寸效应
当纳米微粒尺寸与光波的波长,传导电子的德布罗意波以及超导态的相干长度或透射深度等物理特征,尺寸相当时,晶体周期性的边界条件将被破坏,声、光、电、磁、热、力学等特征是新的物理性质的变化称为小尺寸效应。
⑶、量子尺寸效应
当粒子尺寸下降到一定值时,金属费米能级附近的电子能级会由准连续变为离散能级的现象和半导体微粒存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能级变宽现象,这称为量子尺寸效应。
⑷、宏观量子隧道效应
隧道效应是指微观粒子具有贯穿势垒的能力,人们发现一些宏观量,如磁化强度,量子相于器中的隧道通量等具有隧道效应,称之为宏观量子轨道效应
⑸、尺寸限制效应(体积效应)
当物体体积减小时与体积密切相关的性质将发生变化,如半导体电子自由程变小,磁体的磁区变小,能量传输的范围变小等,这就是体积效应
三、由于以上几种效应存在,纳米材料呈现如下巨大应用潜力的宏观物理和化学性能:⑴、高强度的高韧性⑵、高热膨胀系数、高比热容和低熔点⑶、特殊的电磁学性质⑷、较高的化学活性⑸、极强的吸波性

投影显示技术(孙文军)
1、分类
2、结构 高度 投影机 电压值 芯片 光 光学 屏幕
3、评价体系
4、投影显示种类
⑴、CRT ⑵、LCD ⑶、DLP ⑷、LCOS
5、投影显示的光源
⑴、卤素灯 ⑵UHP ⑶LED
6、光学调制(空间调制器)
LCD(透射) PDP LCOS(透射式) DLP
加电压与输出亮度为线性
被动发光:(1)照明光均匀性(2)输出截面与芯片相匹配(3)亮度
颜色的合成
1、空间合成 R+G+B=W
2、时间合成 C+M+Y=B
芯片DL中:(1)不需偏振(2)矩形(3)均匀化(4)结构简单化(5)能量利用率高
半导体量子级联激光器 ①波导层 ①工作物质
一、结构 ②作电极 ②激励条件
二、粒子数反转 ③粒子数反转
三、半导体中电子能级结构 ④谐振腔
四、如何实现粒子数反转 激励条件:外加电场Fo、内部极化场Fp

胡建民
地球辐射带
电子0~7MeV
航天器常见轨道的环境特点
低地球轨道:200—1000km 微流星和空间碎片
中地球轨道:约2000km 高能粒子
空间环境模拟器
热真空环境模拟器
空间动力学模拟器
空间组合环境模拟器
如何实现等效?
空间环境粒子 地面实验粒子
通量连续 通量单一
能谱连续 单能粒子
多种粒子 一种粒子
太阳能电池
1、JPL等效注量法
优点:传统:1980年提出 1982Si 1996GaAs
应用广泛,形成成熟的评价系统
考虑了低能粒子的损伤效应
缺点:过程繁琐,实验数据过多(4e+8P)
与电池设计参数关系密切
2、位移损伤剂量法
优点:所需的地面实验数据较少,地面粒子的能量选取方便
评价方法简单易行
缺点:1995年提出,方法较新,缺少前期研究基础
更适用于厚度较薄的电池(几个 m)
没有考虑低能粒子的辐照损伤效应
3、目前空间电池的分类与应用
⑴、单晶硅太阳电池
①1958年3月,美国先锋号首次用太阳电池板供电
②价格低廉,工艺简单
⑵、GaAs/Ge单结太阳电池
①1983年,美国首次在LIPS卫星使用,共计1800片
②1986年,前苏联和平号空间站全部使用
③2002年3月25日,神舟3号进行搭载试验
⑶、GaInP/GaAs/Ge三结太阳电池
①1997年,美国HP系列卫星开始使用双结电池
②2002年,美GaLaxy卫星首次使用三结电池
4、……关键:
⑴、确定辐照缺陷的类型浓度等参数
⑵、建立太阳电池的辐照损伤模型
5、揭示损伤机理的关键
⑴、探测辐照损伤缺陷的类型浓度分布
针对缺陷类型提高电池材料的抗辐射能力
根据缺陷浓度和粒子能量提高防护方法
⑵、建立辐射损伤的物理模型
为了提高电池的抗辐射能力提供理论依据
可以科学评价电池在轨行为,对于提高航天器在轨运行的稳定性和可靠性具有重要意义
燃料电池(李仲秋)
一、概述
工作原理:从正极处的氢气中抽取电子。(氢气被电化学氧化掉或称燃烧掉了)这些负电子流到导电的正极,同时,余下的正原子通过电解液被送到负极,在负极,离子与氧气发生反应并从负极吸收电子。这一反应的产品是电流、热量和水
二、燃料电池技术分类
燃料电池的种类按不同的方法可大致分类如下:
1、按燃料电池的运行机理分 分为酸性燃料电池和碱性燃料电池
2、按电解质的种类不同 有酸性、碱性、熔融盐类或固体电解质 碱性燃料电池,磷酸燃料电池,熔融碳酸盐燃料电池,固体氧化物燃料电池,质子交换膜燃料电池
3、按燃料类型分 有氢气、甲醇、甲烷、乙烷、甲苯、丁烯、丁烷等有机燃料,汽油、柴油和天然气等气体燃料
4、按燃料电池工作温度分 有低温型,温度低于200℃,中温型温度为200~750℃,高温型,温度高于750℃

⑵ 从近代物理讲座这门课学到了什么

近代物理 - 发展史
近代物理 - 经典物理与近代物理
第一,立足于牛顿

牛顿
力学的经典物理学和经典自然科学在很在程度上是关于自然事物,自然属性,自然过程和自然界
近代物理研讨会
规律性的知识,但它往往没有对这些事物,属性,过程和规律性的机制(道理)从因果性上作出解释;近代自然科学所能做到的或应当做到的,则是依据于对微观过程的了解,解决这些"为什么"的问题.
第二,经典自然科学有它的普遍性和整体性,但就对整个自然事物的反映看,经典理论基本上是关于特殊的,局部的自然领域的知识;近代自然科学则具有更高程度的普遍性和更大范围的全局性
近代物理 - 第一章发展中的物理学
1相对论
相对论是现代物理学的重要基石.它的建立20世纪自然科学最伟大的发现之一,对物理学,天文学乃至哲学思想都有深远的影响.相对论是科学技术发展到一定阶段的必然产物,是电磁理论合乎逻辑的继续和发展,是物理学各有关分支又一次综合的结果.相对论经迈克耳逊,莫雷实验,洛伦兹及爱因斯坦等人发展而建立.
2量子力学
1900年普朗克为了克服经典理论解释黑体辐射规律的困难,引入了能量了概念,为量子理论奠定了基石.随后爱因斯坦针对光电效应实验与经典理论的矛盾,提出了光量子假说,并在固体比热问题上成功地运用了能量子概念,为量子理论的发展打开了局面.1913年,玻尔在卢瑟福有核模型的基础上运用了量子化概念,对氢光谱作出了满意的解释,使量子论取得了初步的胜利.之后经过玻尔,索末菲海森堡,薛定谔,狄拉克等人开创性的工作,终于在1925年-1928年开成了完整的量子力学理论.
3原子核及基本粒子原子核物理学起源于放射性的研究,是19世纪末兴起的崭新课题.在这以前,人类对这年领域毫开所知.从事这项研究的物理学家,他们通过作新创制的简陋仪器进行各种实验和观察,从中收集数据,总结经验,寻找规律,探索不断开拓新的领域.1933年以后,原子核物理理论才逐渐形成.
4固体物理学
20世纪初,固体物理学就开始深入到微观领域,人们开始利用微观规律来计算实验观测量.量子力学首先应用于简谐振子及简单的原子上,并显示了其正确性,其次又在化学键的问题上取得了效果.二十世纪20年代后,固体物理学作为一门学科在物理学领域中诞生.
5物理学与技术
物理学的发展为新技术提供了基础,与此相反的关系也完全存在.假如不采用电子技术的各式各样的机器,今天的物理学,甚至整个科学研究都可能连一天也存在不下去.要建造超高能物理学所不可缺少的巨大加速器,必须要动员当前最先进的精密机械技术和电子学技术才行.同时由于对技术进步的不断要求,作为这些技术基础的物理学的研究也正在日益加强.可以说,没有上述各方面的条件,就不可能存在今天这种大规模,多方面的物理学研究.
6科学的体制化
近代物理学的基础工程学科化这种趋势,当然是由围绕科学的新的社会状况的出现所形成和促进的.
7物理学在地理上的扩大
物理学的变迁,同时也伴有物理学在地理上扩大.俄国(苏联),美国,日本,中国及欧洲,亚洲,非洲物理学在地理上的扩大,必将会进一步扩大在进行尖端物理学研究,所以,没有理由认为这些国家将来不会产生真正的物理学研究.
8研究技术化
可以把这一趋势同由物理学所支撑着的各种各样新技术所持有的可能性相结合,看作是社会进步的一个标志.
近代物理 - 第二章节近代物理学的序幕
一电子的发现
背景:电子的发现起源于对阴极射线的研究.阴极射线是低压气体放电过程中的一种奇特现象.这一观点得到赫兹等人的支持,赞成以太说的大多是德国人.英国物理学家克鲁克斯以及舒斯特根据各自的实验及解释都认为阴极射线是由粒子组成的.德国学派主张以太学说,英国学派主张带电微粒说.
J.J.汤姆生对电子研究
⒈定性研究:J.J.汤姆生还改进了赫兹的静电场偏转实验,他进一步提高了真空度,并且减小极间电压,以防止气体电离,终于获得了稳定的静电偏转.
⒉定量研究:一种方法是用静电场偏转管在管子两侧各加一通电线圈以产生垂直于电场方向的磁场,然后根据电场和磁场分别造成的偏转,计算出阴极射线的荷质比e/m,另一种方法是测量阴极的温升.因为阴极射线撞击到阴极,会引起阴极的温度升高.J.J.汤姆生把热电偶接到阴极,测量它的温度变化,两种不同的方法得到的结果相近,荷质比
⒊普遍性证明
二X射线的研究
1895年,德国的维尔茨堡大学,伦琴教授阴极射线研究发现了X射线
三,放射性的发现
对阴极射线研究引起了放射性物质的发现.1896年5月18日,贝克勒尔发现了放射性.
贝克勒尔发现放射性虽然没有伦琴发现X射线那样轰动一时,意义却更为深远.因为这是人类第一次接触到核现象,为后来居里夫妇,卢瑟福等对放射性研究发展开辟了道路.
近代物理 - 第三章相对论的建立
相对论的研究起源于"以太漂移"的探索以及光行差的观测.1678年惠更斯把光振动类比于声振动,看成是以太中的弹性脉冲.但是后来由于光的微粒说占了上风,以太理论受到压抑,牛顿就认为不需要以太,他主张超距作用.1800年以后,由于波动说成功地解释了干涉,衍射和偏振等现象,以太学说重新抬头.在波动说的支持者看来,光既然是一种波,就一定要有一种载体,这就是以太.他们把以太看成是无所不在,绝对静止,极其稀薄的刚性"物质".
机械波的波动方程与电磁波的波动方程
机械振动只有在弹性介质中传播才形成机械波,在弹性介质中应用牛顿定律和胡克定律,即可建立机械波的波动方程,一维横波的波动方程为
机械波的波动方程和波速这些性质是否也适用于电磁波(包括光波)呢电磁波有类似于机械波的波动方程,那么,电磁波的波动方程是相对于什么样的参考系建立的真空中速度是相对于什么参考系的.
1861年,英国物理学家麦克斯韦总结前人的实验规律基础上,推导真空中电磁波的波动方程,其一维形式的真空波动方程为:
3.迈克耳逊―莫雷实验
波动理论假定了真空中充满以太,光相对于以太的速度C传播,地球上的观察者所测到真空中光速的数值将是多大呢如果认为地球运动时以太完全没有被带动,地球上测到的真空光速应该是光对以太的速度与地球相对于以太速度的矢量差,为了能够显示出光相对于地球的传播速度不同于C,迈克耳逊设计了一个十分巧妙的实验.
在迈克耳逊最初装置中,采用地球公转速度可得0.04个条纹,这是一个很小的效应,但他的仪器装置观察到的只是0.02个条纹的变动,即使进一步改进,结果都没有观察到条纹的移动.
4.洛伦兹等人的贡献
斐兹杰惹于1889年,洛伦兹于1892年先后独立地提出了着名的洛伦兹―斐兹杰惹收缩假定.他们都承认以太的存在,在以太中静止的一个长为L的物体,当它沿长度方向相对于以太速率V运动时,将缩短到
5.爱因斯坦与狭义相对论
将相对性原理应用于电磁理论,如果认为电磁场的麦克斯韦方程组是正确的(方程组中真空中光速C的普适常数出现).则必须同时承认真空中光速C对所有惯性系相同,与波源的运动无关.然而,这却是于牛顿力学不相等的.在牛顿力学中,速度总是相对于一定的参考系,不允许在动力学方程中出现普适的速度.
6.广义相对论的建立
狭义相对论建立之后,爱因斯坦并没有止步,他认为狭义相对论还有许多问题没有解决,例如:为什么惯性质量随能量变化为什么一切物体在引力场中下落都具有同样的加速度1916年,爱因斯坦发表了《广义相对论的基础》,对广义相对论的研究作了全面的总结.在论文中,爱因斯坦证明了牛顿理论可以作为相对论引力理论的第一级近似,并且组给出了谱线红移,光线弯曲,行星轨道近日点进动的理论预言
7.爱因斯坦的成功分析
1.兼收并蓄
2.敢于创新,突破常规精神
3.哲学修养
美发射探测卫星验证88年前爱因斯坦的预言
近代物理 - 第四章量子力学的发展
一黑体辐射的研究
1859年基尔霍夫物体热辐射的发射本领e(v,T)和吸收本领a(v,T)的比值都相等,并等于该温度下黑体对同一波长的辐射度
1879年斯特潘根据实验总结出黑体辐射总能量与黑体温度四次方成正比的关系
1893年维恩经验式子
1900年瑞利
为了解决上述困难,普朗克利用内插法,将适用于短波的维恩公式和适用于长波的瑞利―金斯公式衔接起来.在1900年提出了一个新的公式
普朗克与统一思想的波动
普朗克对量子论的研究工作中犹豫徘徊,畏缩不前的主要原因是物理学的统一性问题,即如何对量子论的解释.
玻尔理论的形成
光谱
卢瑟福
量子理论
玻尔理论
1913年《原子构造和分子构造》提出了两条基本假设:定态,跃迁
1914年,夫兰克和G.赫兹以能量分立的指导思想,进行电子与原子的碰撞实验设计.他们利用慢电子与稀薄水银蒸气碰撞方法,来确定银原子的激发电位或电离电位.从而证实原子只能处在一定的分立能量状态当中.由此突破了"自然无飞跃"能量连续性的经典物理观点.这个实验成为玻尔原子理论的一个重要证据之一,
1918年,玻尔为了解释谱线强度这一当时原子理论无法解决的难题,提出了协调经典物理理论与微观量子理论之间相互关系的对应原理
玻尔的直觉与创新研究方法
玻尔的科研思想与他的直觉相联系在一起,他从不畏缩不前,也不遵循所谓严格的逻辑道路的方法.玻尔灵活的思维特点与思想方法在今天已成为越来越多的人所理解和赏识.
量子力学的建立
1924年泡利提出不相容原理.这个原理促使乌伦贝克和高斯密特,在1925年提出电子自旋的设想.从而使长期得不到解释的光谱精细结构,反常塞曼效应和斯特恩―盖拉赫实验等难题迎刃而解.同年,海森伯创立了阵矩力学,使量子理论登上了一个新的台阶.1923年德布罗意提出物质波假设,导致了薛定谔在1926年以波动方程的形式建立了新的量子理论.不久薛定谔证明,这两种量子理论是完全等价的,只不过形式不同罢了.1928年狄拉克提出电子的相对论性运动方程――狄拉克方程,奠定了相对论性量子力学的基础.
近代物理 - 第五章中国物理学者在近代物理学发展中贡献
一出国留学
中国学者出国留学可追溯到,在19世纪中叶,清朝赴欧留学得就达一百多人.清朝洋务活动的"求强","求富"过程中,为训练新式陆海军和创办近代军事工业和民安企业,曾陆续派出许多学生到各国求学.在1862―1900年间,有几百人,以官费,自费出国游学,但主要是学习语言,驾驶,架线,电工,炮术,造船,铸造,采矿,机织等实用技术和军事技术,当时不可能也没有眼光派学生去学习数理化基础学科.
二物理学教育的发展
在1895年和1897年分别创办了天津西学堂和上海南洋公学.中西学堂分设头等学堂,二等学堂,前者相当于大学.
1898年创办的京师在大学堂,
三研究机构的建立
1928年3月在上海成立国立理化实业研究所,同年6月中央研究院创立,同年11月理化实业研究所之一部分改名为物理学研究所,隶属中央研究院.
1929年9月在北平建立了北平研究院
20世纪20年代末,国家批准有条件大学设立研究部,在教学同时开展科学研究.
四中国物理学会
中国物理学会成立于1932年,它是中国物理学教学,研究发展的必然结果,截止1932年左右,物理学工作者约300人左右.
中国物理学报于1933年创刊.在1933―1935年出版了第一卷共三期,至1950年共出版了七卷.该学报以外文(主要为英文,个别为法文,德文)发表,附以中文摘要.它在国内外学术交流中起到了很好的作用.
五国外物理学家对我国近代物理学发展得作用
1国外物理学家对我国物理学者得培养与帮助.我国许多物理学家都得到了国外着名物理学者的培养.
2国外物理学家来华讲学极大地促进了我国物理学的发展.1921年蔡元培和夏元0访问爱因斯坦,并邀请他来中国讲学.朗之万于1931年底来华讲学.1937年5月31日至6月4日,玻尔来华进行了讲学.
六我国物理学者在近代物理学中得主要贡献
吴有训在美国研究Compton效应着称,他的关于Compton效应中变线与不变线的能量分布比率的两篇实验论文,确凿地证明了Compton效应的存在,丰富的和发展了Compton工作,并加速国际学术界对Compton效应的认识.吴有训回国后,或独自或带领研究生继续从事有关的研究.
赵忠尧在研究硬射线的吸收系数及其散射的实验中,最早观察到正负电子对的产生和湮没现象
萨本栋在30年代关于三相电路并矢代数的研究,是属于数学,物理和电机的三角地带,被美国电气工程师学会评为1937年度"理论和研究最佳文章荣获".40年代萨本栋从事交流电机研究,以标么值系统分析交流电机问题.他根据在厦门大学和美国讲课的素材编写的《交流电机基础》一书,被英国,美各国高等院采作教材.开创了中国科学家编写的教材被国外采用的先例.
1949年,张文裕在吸收介子的云室研究中,发现了子和子辐射现象,开拓了奇异原子物理研究的新领域.国际上曾称此二发现为"张辐射"和"张原子".
黄昆在1947年发现了后来被称为"黄散射",即固体中杂质缺陷导致X光漫散射,它直接有效地成为研究晶体微观缺陷的手段.1950年,黄昆和(李爱扶)共同提出了多声子辐射和无辐射跃迁的量子理论,在国际上被称为黄理论.1947-1951年间,黄昆与合着《晶格动力学》一书,它成为该领域的一本基本理论着作而在国际上享有盛名.
谢玉铭于1932-1934年间在美国与W.V.Houston合作研究氢原子光谱Balmer系的精细结构,发现了在40年代后期才得以肯定的"Lamb"移位,并提出了40年代后期有关重整化理论的发展方向相同的大胆建议.W.E.Lamb于1947-1948年间所作的类似实验及发现而获得1995年诺贝尔物理学奖.

⑶ 我想给我的高中同学讲一些关于量子力学的物理讲座。40分钟那种。不要太高深太深奥,我也只读过时间简史

量子力学是描写微观物质的一个物理学理论,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的学科都是以量子力学为基础所进行的。
量子力学是非常小的领域——亚原子粒子中的主要物理学理论[1] 。该理论形成于20世纪早期,彻底改变了科学家对物质组成成分的观点。在量子世界,粒子并非是台球,而是嗡嗡跳跃的概率云,它们并不只存在一个位置,也不会从点A通过一条单一路径到达点B[1] 。根据量子理论,粒子的行为常常像波,用于描述粒子行为的“波函数”预测一个粒子可能的特性,诸如它的位置和速度,而非实际的特性[1] 。物理学中有些怪异的想法,诸如纠缠和不确定性原理,就源于量子力学[1] 。
电子云
19世纪末,经典力学和经典电动力学在描述微观系统时的不足越来越明显。量子力学是在20世纪初由马克斯·普朗克、尼尔斯·玻尔、沃纳·海森堡、埃尔温·薛定谔、沃尔夫冈·泡利、路易·德布罗意、马克斯·玻恩、恩里科·费米、保罗·狄拉克、阿尔伯特·爱因斯坦、康普顿等一大批物理学家共同创立的。通过量子力学的发展人们对物质的结构以及其相互作用的见解被革命化地改变。通过量子力学许多现象才得以真正地被解释,新的、无法直接想象出来的现象被预言,但是这些现象可以通过量子力学被精确地计算出来,而且后来也获得了非常精确的实验证明。除通过广义相对论描写的引力外,至今所有其它物理基本相互作用均可以在量子力学的框架内描写(量子场论)。
有人引用量子力学中的随机性支持自由意志说,但是第一,这种微观尺度上的随机性和通常意义下的宏观的自由意志之间仍然有着难以逾越的距离;第二,这种随机性是否不可约简(irrecible)还难以证明,因为人们在微观尺度上的观察能力仍然有限。自然界是否真有随机性还是一个悬而未决的问题。对这个鸿沟起决定作用的就是普朗克常数。统计学中的许多随机事件的例子,严格说来实为决定性的。
在量子力学中,一个物理体系的状态由波函数表示,波函数的任意线性叠加仍然代表体系的一种可能状态。对应于代表该量的算符对其波函数的作用;波函数的模平方代表作为其变量的物理量出现的几率密度。
量子力学是在旧量子论的基础上发展起来的。旧量子论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论。
1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出普朗克公式,正确地给出了黑体辐射能量分布。
1905年,爱因斯坦引进光量子(光子)的概念,并给出了光子的能量、动量与辐射的频率和波长的关系,成功地解释了光电效应。其后,他又提出固体的振动能量也是量子化的,从而解释了低温下固体比热问题。
1913年,玻尔在卢瑟福原有核原子模型的基础上建立起原子的量子理论。按照这个理论,原子中的电子只能在分立的轨道上运动,在轨道上运动时候电子既不吸收能量,也不放出能量。原子具有确定的能量,它所处的这种状态叫“定态”,而且原子只有从一个
普朗克
定态到另一个定态,才能吸收或辐射能量。这个理论虽然有许多成功之处,但对于进一步解释实验现象还有许多困难。
在人们认识到光具有波动和微粒的二象性之后,为了解释一些经典理论无法解释的现象,法国物理学家德布罗意于1923年提出了物质波这一概念。认为一切微观粒子均伴随着一个波,这就是所谓的德布罗意波。
德布罗意的物质波方程:E=ħω,p=h/λ,其中ħ=h/2π,可以由

得到


由于微观粒子具有波粒二象性,微观粒子所遵循的运动规律就不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。当粒子的大小由微观过渡到宏观时,它所遵循的规律也由量子力学过渡到经典力学。
1925年,海森堡基于物理理论只处理可观察量的认识,抛弃了不可观察的轨道概念,并从可观察的辐射频率及其强度出发,和玻恩、约尔当一起建立起矩阵力学;1926年,薛定谔基于量子性是微
波粒二象性
观体系波动性的反映这一认识,找到了微观体系的运动方程,从而建立起波动力学,其后不久还证明了波动力学和矩阵力学的数学等价性;狄拉克和约尔丹各自独立地发展了一种普遍的变换理论,给出量子力学简洁、完善的数学表达形式。
当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。这就是1927年,海森伯得出的测不准关系,同时玻尔提出了并协原理,对量子力学给出了进一步的阐释。
量子力学和狭义相对论的结合产生了相对论量子力学。经狄拉克、海森伯(又称海森堡,下同)和泡利等人的工作发展了量子电动力学。20世纪30年代以后形成了描述各种粒子场的量子化理论——量子场论,它构成了描述基本粒子现象的理论基础。
海森堡还提出了测不准原理,原理的公式表达如下:ΔxΔp≥ħ/2=h/4π。

基本原理编辑
量子力学的基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。
薛定谔
海森堡
狄拉克

状态函数
在量子力学中,一个
玻尔
物理体系的状态由状态函数表示,状态函数的任意线性叠加仍然代表体系的一种可能状态。状态随时间的变化遵循一个线性微分方程,该方程预言体系的行为,物理量由满足一定条件的、代表某种运算的算符表示;测量处于某一状态的物理体系的某一物理量的操作,对应于代表该量的算符对其状态函数的作用;测量的可能取值由该算符的本征方程决定,测量的期望值由一个包含该算符的积分方程计算。 (一般而言,量子力学并不对一次观测确定地预言一个单独的结果。取而代之,它预言一组可能发生的不同结果,并告诉我们每个结果出现的概率。也就是说,如果我们对大量类似的系统作同样地测量,每一个系统以同样的方式起始,我们将会找到测量的结果为A出现一定的次数,为B出现另一不同的次数等等。人们可以预言结果为A或B的出现的次数的近似值,但不能对个别测量的特定结果做出预言。)状态函数的模平方代表作为其变量的物理量出现的几率。根据这些基本原理并附以其他必要的假设,量子力学可以解释原子和亚原子的各种现象。
根据狄拉克符号表示,状态函数,用<Ψ|和|Ψ>表示,状态函数的概率密度用ρ=<Ψ|Ψ>表示,其概率流密度用(?/2mi)(Ψ*▽Ψ-Ψ▽Ψ*)表示,其概率为概率密度的空间积分。
状态函数可以表示为展开在正交空间集里的态矢比如

,其中|i>为彼此正交的空间基矢,

为狄拉克函数,满足正交归一性质。 态函数满足薛定谔波动方程,

,分离变数后就能得到不显含时状态下的演化方程

,En是能量本征值,H是哈密顿算子。
于是经典物理量的量子化问题就归结为薛定谔波动方程的求解问题。

微观体系
体系状态
但在量子力学中,体系的状态有两种变化,一种是体系的状态按运动方程演进,这是可逆的变化;另一种是测量改变体系状态的不可逆变化。因此,量子力学对决定状态的物理量不能给出确定的预言,只能给出物理量取值的几率。在这个意义上,经典物理学因果律在微观领域失效了。
据此,一些物理学家和哲学家断言量子力学摈弃因果性,而另一些物理学家和哲学家则认为量子力学因果律反映的是一种新型的因果性——几率因果性。量子力学中代表量子态的波函数是在整个空间定义的,态的任何变化是同时在整个空间实现的。
微观体系
20世纪70年代以来,关于远隔粒子关联的实验表明,类空分离的
量子力学
事件存在着量子力学预言的关联。这种关联是同狭义相对论关于客体之间只能以不大于光速的速度传递物理相互作用的观点相矛盾的。于是,有些物理学家和哲学家为了解释这种关联的存在,提出在量子世界存在一种全局因果性或整体因果性,这种不同于建立在狭义相对论基础上的局域因果性,可以从整体上同时决定相关体系的行为。
量子力学用量子态的概念表征微观体系状态,深化了人们对物理实在的理解。微观体系的性质总是在它们与其他体系,特别是观察仪器的相互作用中表现出来。
人们对观察结果用经典物理学语言描述时,发现微观体系在不同的条件下,或主要表现为波动图象,或主要表现为粒子行为。而量子态的概念所表达的,则是微观体系与仪器相互作用而产生的表现为波或粒子的可 能性。

不确定性
量子力学表明,微观物理实在既不是波也不是粒子,真正的实在是量子态。真实状态分解为隐态和显态,是由于测量所造成的,在这里只有显态才符合经典物理学实在的含义。微观体系的实在性还表现在它的不可分离性上。量子力学把研究对象及其所处的环境看作一个整体,它不允许把世界看成由彼此分离的、独立的部分组成的。关于远隔粒子关联实验的结论,也定量地支持了量子态不可分离 . 不确定性指经济行为者在事先不能准确地知道自己的某种决策的结果。或者说,只要经济行为者的一种决策的可能结果不止一种,就会产生不确定性。
不确定性也指量子力学中量子运动的不确定性。由于观测对某些量的干扰,使得与它关联的量(共轭量)不准确。这是不确定性的起源。
在量子力学中,不确定性指测量物理量的不确定性,由于在一定条件下,一些力学量只能处在它的本征态上,所表现出来的值是分立的,因此在不同的时间测量,就有可能得到不同的值,就会出现不确定值,也就是说,当你测量它时,可能得到这个值,可能得到那个值,得到的值是不确定的。只有在这个力学量的本征态上测量它,才能得到确切的值。
在经典物理学中,可以用质点的位置和动量精确地描述它的运动。同时知道了加速度,甚至可以预言质点接下来任意时刻的位置和动量,从而描绘出轨迹。但在微观物理学中,不确定性告诉我们,如果要更准确地测量质点的位置,那么测得的动量就更不准确。也就是说,不可能同时准确地测得一个粒子的位置和动量,因而也就不能用轨迹来描述粒子的运动。这就是不确定性原理的具体解释。

玻尔理论
玻尔,量子力学的杰出贡献者,玻尔指出:
电子云
电子轨道量子化概念。玻尔认为, 原子核具有一定的能级,当原子吸收能量,原子就跃迁更高能级或激发态,当原子放出能量,原子就跃迁至更低能级或基态,原子能级是否发生跃迁,关键在两能级之间的差值。根据这种理论,可从理论计算出里德伯常理,与实验符合的相当好。可玻尔理论也具有局限性,对于较大原子,计算结果误差就很大,玻尔还是保留了宏观世界中轨道的概念,其实电子在空间出现的坐标具有不确定性,电子聚集的多,就说明电子在这里出现的概率较大,反之,概率较小。很多电子聚集在一起,可以形象的称为电子云。

泡利原理
由于从原则上,无法彻底确定一个量子物理系统的状态,因此在量子力学中内在特性(比如质量、电荷等)完全相同的粒子之间的区分,失去了其意义。在经典力学中,每个粒子的位置和动量,全部是完全可知的,它们的轨迹可以被预言。通过一个测量,可以确定每一个粒子。在量子力学中,每个粒子的位置和动量是由波函数表达,因此,当几个粒子的波函数互相重叠时,给每个粒子“挂上一个标签”的做法失去了其意义。
这个全同粒子(identical particles) 的不可区分性,对状态的对称性,以及多粒子系统的统计力学,有深远的影响。比如说,一个由全同粒子组成的多粒子系统的状态,在交换两个粒子“1”和粒子“2”时,我们可以证明,不是对称的,就是反对称的。对称状态的粒子是被称为玻色子,反对称状态的粒子是被称为费米子。此外自旋的对换也形成对称:自旋为半数的粒子(如电子、质子和中子)是反对称的,因此是费米子;自旋为整数的粒子(如光子)是对称的,因此是玻色子。
这个深奥的粒子的自旋、对称和统计学之间关系,只有通过相对论量子场论才能导出,但它也影响到了非相对论量子力学中的现象。费米子的反对称性的一个结果是泡利不相容原理,即两个费米子无法占据同一状态。这个原理拥有极大的实用意义。它表示在我们的由原子组成的物质世界里,电子无法同时占据同一状态,因此在最低状态被占据后,下一个电子必须占据次低的状态,直到所有的状态均被满足为止。这个现象决定了物质的物理和化学特性。
费米子与玻色子的状态的热分布也相差很大:玻色子遵循玻色-爱因斯坦统计,而费米子则遵循费米-狄拉克统计。

历史背景编辑
19世纪末20世纪初,经典物理已经发展到了相当完善的地步,但在实验方面又遇到了一些严重的困难,这些困难被看作是“晴朗天空的几朵乌云”,正是这几朵乌云引发了物理界的变革。下面简述几个困难:

黑体辐射问题
19世纪末,许多物理学家对黑体辐射非常感兴趣。

黑体是一个理想化了的物体,它可以吸收,所有照射到它上面的辐射,并将这些辐射转化为热辐射,这个热辐射的光谱特征仅与该黑体的温度有关。使用经典物理这个关系无法被解释。通过将物体中的原子看作微小的谐振子,马克斯·普朗克得以获得了一个黑体辐射的普朗克公式。但是在引导这个公式时,他不得不假设这些原子谐振子的能量,不是连续的(这与经典物理学的观点相违背),而是离散的: En=nhν
这里n是一个整数,h是一个自然常数。(后来证明正确的公式,应该以n+1/2来代替n,参见零点能量。)。1900年,普朗克在描述他的辐射能量子化的时候非常地小心,他仅假设被吸收和放射的辐射能是量子化的。今天这个新的自然常数被称为普朗克常数来纪念普朗克的贡献。其值:


光电效应实验
由于紫外线照射,大量电子从金属表面逸出。经研究发现,光电效应呈现以下几个特点:
光电效应
a. 有一个确定的临界频率,只有入射光的频率大于临界频率,才会有光电子逸出。
b. 每个光电子的能量只与照射光的频率有关。
c. 入射光频率大于临界频率时,只要光一照上,几乎立刻观测到光电子。
以上3个特点,c是定量上的问题,而a、b在原则上无法用经典物理来解释。

原子光谱学
光谱分析积累了相当丰富的资料,不少科学家对它们进行了整理与分析,发现原子光谱是呈分立的线状光谱而不是连续分布。谱线的波长也有一个很简单的规律。
Rutherford模型发现后,按照经典电动力学,加速运动的带电粒子将不断辐射而丧失能量。故,围绕原子核运动的电子终会因大量丧失能量而’掉到’原子核中去。这样原子也就崩溃了。现实世界表明,原子是稳定的存在着。
能量均分定理
在温度很低的时候能量均分定理不适用。

光量子理论
量子理论是首先在黑体辐射问题上突破的。Planck为了从理论上推导他的公式,提出了量子的概念-h,不过在当时没有引起很多人的注意。Einstein利用量子假设提出了光量子的概念,从而解决了光电效应的问题。Einstein还进一步把能量不连续的概念用到了固体中原子的振动上去,成功的解决了固体比热在T→0K时趋于0的现象。光量子概念在Compton散射实验中得到了直接的验证。
玻尔的量子论
Bohr把Planck-Einstein的概念创造性的用来解决原子结构和原子光谱的问题,提出了他的原子的量子论。主要包括两个方面:
a. 原子能且只能稳定的存在分立的能量相对应的一系列的状态中。这些状态成为定态。
b. 原子在两个定态之间跃迁时,吸收或发射的频率v是唯一的,由hv=En-Em 给出。
Bohr的理论取得了很大的成功,首次打开了人们认识原子结构的大门,但是随着人们对原子认识进一步加深,它存在的问题和局限性也逐渐为人们发现。

德布罗意波
在Planck与Einstein的光量子理论及Bohr的原子量子论的启发下,考虑到光具有波粒二象性,de Broglie根据类比的原则,设想实物粒子也具有波粒二象性。他提出这个假设,一方面企图把实物粒子与光统一起来,另一方面是为了更自然的去理解能量的不连续性,以克服Bohr量子化条件带有人为性质的缺点。实物粒子波动性的直接证明,是在1927年的电子衍射实验中实现的。

量子物理学
量子力学本身是在1923-1927年一段时间中建立起来的。两个等价的理论---矩阵力学和波动力学几乎同时提出。矩阵力学的提出与Bohr的早期量子论有很密切的关系。Heisenberg一方面继承了早期量子论中合理的内核,如能量量子化、定态、跃迁等概念,同时又摒弃了一些没有实验根据的概念,如电子轨道的概念。Heisenberg、Bohn和Jordan的矩阵力学,从物理上可观测量,赋予每一个物理量一个矩阵,它们的代数运算规则与经典物理量不同,遵守乘法不可易的代数。波动力学来源于物质波的思想。Schr dinger在物质波的启发下,找到一个量子体系物质波的运动方程-Schr dinger方程,它是波动力学的核心。后来Schr dinger还证明,矩阵力学与波动力学完全等价,它是同一种力学规律的两种不同形式的表述。事实上,量子理论还可以更为普遍的表述出来,这是Dirac和Jordan的工作。
量子物理学的建立是许多物理学家共同努力的结晶,它标志着物理学研究工作第一次集体的胜利。

实验现象编辑

光电效应
1905年,阿尔伯特·爱因斯坦通过扩展普朗克的量子理论,提出不仅仅物质与电磁辐射之间的相互作用是量子化的,而且量子化是一个基本物理特性的理论。通过这个新理论,他得以解释光电效应。海因里希·鲁道夫·赫兹和菲利普·莱纳德等人的实验,发现通过光照,可以从金属中打出电子来。同时他们可以测量这些电子的动能。不论入射光的强度,只有当光的频率,超过一个临限值(截止频率)后,才会有电子被射出。此后被打出的电子的动能,随光的频率线性升高,而光的强度仅决定射出的电子的数量。爱因斯坦提出了光的量子(光子这个名称后来才出现)的理论,来解释这个现象。光的量子的能量为hν
在光电效应中这个能量被用来将金属中的电子射出(逸出功

)和加速电子(动能):
爱因斯坦光电效应方程:

=hν-

这里m是电子的质量,v是其速度。假如光的频率太小的话,那么它无法使得电子越过逸出功,不论光强有多大。

原子能级跃迁
20世纪初卢瑟福模型是当时被认为正确的原子模型。这个模型假设带负电荷的电子,像行星围绕太阳运转一样,围绕带正电荷的原子核运转。在这个过程中库仑力与离心力必须平衡。但是这个模型有两个问题无法解决。首先,按照经典电磁学,这个模型不稳定。按照电磁学,电子不断地在它的运转过程中被加速,同时应该通过放射电磁波丧失其能量,这样它很快就会坠入原子核。其次原子的发射光谱,由一系列离散的发射线组成,比如氢原子的发射光谱由一个紫外线系列(赖曼系)、一个可见光系列(巴耳末系)和其它的红外线系列组成。按照经典理论原子的发射谱应该是连续的。
1913年,尼尔斯·玻尔提出了以他命名的玻尔模型,这个模型为原子结构和光谱线,给出了一个理论原理。玻尔认为电子只能在一定能量En的轨道上运转。假如一个电子,从一个能量比较高的轨道(En),跃到一个能量比较低的轨道(Em)上时,它发射的光的频率为。
通过吸收同样频率的光子,可以从低能的轨道,跃到高能的轨道上。
玻尔模型可以解释氢原子,改善的玻尔模型,还可以解释只有一个电子的离子,即He+,Li2+,Be3+等。但无法准确地解释其它原子的物理现象。

电子的波动性
德布罗意假设,电子也同时伴随着一个波,他预言电子在通过一个小孔或者晶体的时候,应该会产生一个可观测的衍射现象。1925年,当戴维孙和革末在进行电子在镍晶体中的散射实验时,首次得到了电子在晶体中的衍射现象。当他们了解到德布罗意的工作以后,于1927年又较精确地进行了这个实验。实验结果与德布罗意波的公式完全符合,从而有力地证明了电子的波动性。[4]
电子的波动性也同样表现在电子在通过双狭缝时的干涉现象中。如果每次只发射一个电子,它将以波的形式通过双缝后,在感光屏上随机地激发出一个小亮点。多次发射单个电子或者一次发射多个电子,感光屏上将会出现明暗相间的干涉条纹。这就再次证明了电子的波动性。[5]
电子打在屏幕上的位置,有一定的分布概率,随时间可以看出双缝衍射所特有的条纹图像。假如一个光缝被关闭的话,所形成的图像是单缝特有的波的分布概率。
从来不可能有半个电子,所以在这个电子的双缝干涉实验中,是电子以波的形式同时穿过两条缝,自己与自己发生了干涉,不能错误地认为是两个不同的电子之间的干涉。值得强调的是,这里波函数的叠加,是概率幅的叠加而不是如经典例子那样的概率叠加,这个“态叠加原理”是量子力学的一个基本假设。

⑷ 物理前沿讲座的学习报告应该包括什么啊

物理前沿讲座--from simplicity to complexity
其实早就做好思想准备听不怎么懂了,主要是为了瞻仰一下大师的风采。Gell-mann 夸克模型的提出者,1969年诺贝尔物理学奖得主。着作有《Kuark and Jaguar>(夸克和美洲豹),不知讲啥的。
下午本来是有自辩课的,翘了。2:30去了教室,上座率极好连后面过道都站满了人。翘着脚在后面看,3点看到了主角人物进场。一位白发苍苍的老人被人搀着进来,就看了一眼。接着就是热烈的掌声。听中文主持人说了一句话,后来就是“请杨先生主持会议“。杨先生自然就是杨振宁先生了,英文会场开始了,大致说了几句话“I met Gell-mann in 1951,we were friends and competitors in the past!"然后就介绍了一下嘉宾,好像还有个89岁的老教授!
下面就是主打报告《from simplicity to complexity>,听了一回就晕菜了,不仅仅是只是听不懂的更重要的是gell的英文听不懂,完全的美国佬的英语,感觉吞音很严重,即使你看着他的讲稿都很费劲听懂英语的。不过既然去了就好好听听了,听一点赚一点了。大致就听了几方面“distinction between regularity and random" ;fundenmental laws:elementary particles;initial condition of universe"
At last he describe a formula "K=y+i".
听完之后狂受打击,以前也听过英文讲座的但没晕到这种程度。看来要发愤练英语了。悲哀呀,我们中国人进入世界,光是英语就阻碍一大步,我们先要看懂英语,然后再来用中文思考研究,最后还要转变成英文面向世界。可是有种感觉以前我们班上有些很牛的同学偏偏英语很滥!无奈亚!!

⑸ 如何学好大学物理

先说说大学物理该怎么学吧。
大学物理里面主要靠自己自学的,上课的话,除非自己学过2次,否则不可能听懂的。Lendau就说过,大学讲课就像对这一群羊在吹笛子。用中国话说就是,大学讲课就是对牛弹琴。
自己找资料,自己看视频,自己做习题。不要指望上可能听懂,去上课只是为了应付点名罢了。

大学的物理很不一样的。高中物理只能算是400年前的物理。从数学方面看,甚至是600年前,笛卡尔时代的物理。本科阶段,指望上课听听课,下课做做习题,那么肯定对物理只有一个很肤浅的认识。很有可能,连什么是物质,什么是物理都搞不懂。
一般的人都要同时看3-5本参考书,才能勉强应付一门课程。所以,大学物理主要还是靠自学,自己找资料,自己看视频,自己做习题。
下面是一点小建议:

1. 多看经典。
先看<Feynman物理学讲义>(特别推荐), 然后看Lendau的<理论物理教程>(特别推荐分析力学,场论部分),再看Gerard 't Hooft 理论物理教材......
以上三位都是Noble prize的大牛。其中
费曼 是量子电动力学的重要开拓者,量子路径积分的发明者;
朗道是一个物理全才, 当今最大的物理分支----凝聚态物理的创始人。
Hooft 是 规范场(Yang-Mills场)理论的可重整性 的证明者。

2 多看好的视频。
网上有很多很好的视频,特别推荐复旦大学苏汝铿的<量子力学>, 北师大梁灿斌的<微分几何和广义相对论>
基础好可以看巴黎高师,Yale(有中文字幕), stanford, MIT的课程
一个好的老师可以让你受益终身。听听大师们的课程,那怕就是一小节你也能领略到另一种境界。

视频的话也要看经典,可以反复看,不用担心走神跟不上。

3。习题是必需的。

4。 多讨论,不讨论是学不好物理的。平时多逛逛论坛。比如,physicsforums ; 新繁星客栈; 相对论吧(虽然最近搞活动比较水,但牛人还是很多的)。里面有很多基础物理的话题。

下面是一些物理课程整理的参考资料。
基础物理 教材: <费曼物理讲义>,
视频:参考Yale开放课程---基础物理,有中文字幕的;
清华杨振宁的基础物理,不过也是英文授课的

理论力学 教材:Goldstein的<理论力学> (暨南大学有中译讲义),南开也有,貌似。
Goldstein怎么牛,看看目录你就知道了,他把Lagrange的办法扩展到SR,QM.

统计物理 教材:汪志诚的, 李政道的。 Landau的。
视频:stanford的热力学与统计物理教程,但目前还没有中译字幕

初等量子力学 教材:周世勋的, 或者曾谨言的
高量 教材:倪光炯的, 或者咯兴林的
视频: 复旦苏汝铿的视频;
基础好的可以看巴黎高师的<量子场论>课程

相对论 教材:先看郭士枋的<广义相对论导论>,然后看<广义相对论> by 刘辽 ,
最后看 <微分几何与广义相对论> by 梁灿斌
梁老师的教材写得很好,但是一开头就是5章微分几何,某些微分几何基础不好的人不一定可以接受。
视频:北师大梁灿斌<微分几何与广义相对论>系列视频
最近梁老师在中国科学院(中关村)晨星中心110教室开课,有条件也可以去旁听,免费的.

凝聚态 教材:.......
视频:中科院文小刚的凝聚态物理讲座

以上都是入门级的课程资料,真正的高手都是看期刊的。

⑹ 名师大讲堂,如何学好高中物理

学习物理非常注重过程,一个认知、理解、运用的过程。
1.认知:利用身边的事物或现象甚至是老师叙述的一些例子来帮助自己去充分认识它,对它产生兴趣。
2.理解:用理解的方式去记忆公式、定理、试验等等。可以用形象思维等等巧妙的方法去理解和记忆。例如,什么是真空,可以这样去理解:真空就是真的空了,什么都没有了。
3.运用:一类是来应付考试,另一类则是来解释身边得一些物理现象。
所以,在学习时,首先,不要有惧怕的心理,因为你前一段没学好的经历可能会暗示你什么,这可能会导致你恶性循环。努力告诉自己“我能行!!!”其实心理暗示很有用哦!不过,为了给自己增加底气,最好还是做好预习工作,做到心里有数。
其次,上课要紧跟老师的思路,适当地记些笔记,记一些书本上没有明确阐明的甚至是遗漏的以及自己容易出错的知识点。课下抽时间多练一练,别以任何理由来推托,从而放弃了练习的最佳时期,最后只能导致悲剧的发生。
最后一点也是最重要的一点,就是一定要做好及时总结。例如,上次考试的卷子发下来了,虽然认真订正过了,但还要想想为什么会错?正确答案是怎么算出来的?如果下次再考到还会错吗?等等。
我想,通过这些学习方法,一定能学好物理的。

⑺ 初中物理知识三分钟讲课

可以讲一个比较典型的题目,不要太难的,因为太难的不仅不好讲,而且三分钟有点紧。可以挑一个简单的,可以拓展。

⑻ 国外物理大师的讲座一般在哪里看

国外物理大师的讲座一般在coursera、edX、Perimeter institute video archive、Perimeter institute video archive、 Harvard CMSA的 talk series、YouTube上观看。
世界十大杰出物理学家是人们根据物理学家对世界的贡献而选出的十个杰出代表,包括牛顿、爱因斯坦、麦克斯韦、玻尔、亨利·卡文迪许、伽利略、理乍得·费曼、理乍得·费曼、马克斯·普朗克、迈克尔·法拉第。
物理学(physics)是研究物质最一般的运动规律和物质基本结构的学科。作为自然科学的带头学科,物理学研究大至宇宙,小至基本粒子等一切物质最基本的运动形式和规律,因此成为其他各自然科学学科的研究基础。

⑼ 求高中物理讲座

物理:
与初中物理相比,高中物理的内容更多,难度更大,能力要求更高,灵活性更强。因此不少同学进入高中之后很不适应,高一进校后,力、物体的运动,暂时还没有什么问题,觉得高中物理不过如此。学到牛顿运动定律问题就开始来了,后面曲线运动、万有引力定律、动量、机械能问题越来越大。如果不及时改变学习态度和学习方法,物理将越来越差劲了,一提及物理就感到头痛,越来越讨厌物理,渐渐就与物理绝缘了。这就使一些初中物理学得很不错的同学,到高中后不能很快地适应而感到困难,以下就怎样学好高中物理谈几点意见和建议。
一、首先要改变观念,初中物理好,高中物理并不一定会好。初中物理知识相对比较浅显,并且内容也不多,更易于掌握。再加上初三后期,通过大量的练习,通过反复强化训练,提高了熟练程度,可使物理成绩有大幅度提高。但分数高并不等于物理学得好、会学物理。如果学习物理的兴趣没有培养起来,再加上没有好的学习方法,那是很难学好高中物理的。所以,首先应该改变观念,初中物理学得好,高中物理并不一定会学得好。所以应降低起点,从头开始。
二、应培养学习物理的浓厚兴趣。兴趣是思维的动因之一,兴趣是强烈而又持久的学习动机,兴趣是学好物理的潜在动力。培养兴趣的途径很多,从学生角度:应注意到物理与日常生活、生产、现代科技密切联系,息息相关。在我们的身边有很多的物理现象,用到了很多的物理知识,如:说话时,声带振动在空气中形成声波,声波传到耳朵,引起鼓膜振动,产生听觉;喝开水时、喝饮料时、钢笔吸墨水时,大气压帮了忙;走路时,脚与地面间的静摩擦力帮了忙,行走过程中就是由一个个倾倒动作连贯而成;淘米时除去米中的杂物,利用了浮力知识;一根直的筷子斜插入水中,看上去筷子在水面处变弯折;闪电的形成等等。有意识地在实际中联系到物理知识,将物理知识应用到实际中去,使我们明确:原来物理与我们联系这样密切,这样有用。可以大大地激发学习物理的兴趣。从老师角度:应通过生动的学生熟悉的实际事例、形象的直观实验,组织学生进行实验操作等引入物理概念、规律,使学生感受到物理与日常生活密切相关;结合教材内容,向学生介绍物理发展史和进展情况以及在现代化建设中的广泛应用,使学生看到物理的用处,明确今天的学习是为了明天的应用;根据教材内容,经常有选择地向学生介绍一些形象生动的物理典故、趣闻轶事和中外物理学家探索物理世界的奥妙的故事;根据教学需要和学生的智力发展水平提出一些趣味性思考性强的问题等等。老师从这些方面下功夫,也可以使学生被动地对物理产生兴趣,激发学生学习物理的激情。
三、在课堂上,提高听课的效率是关键。学习期间,在课堂中的时间很重要。因此听课的效率如何,决定着学习的基本状况,提高听课效率应注意以下几个方面:
1、课前预习能提高听课的针对性。预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,新的知识有所了解,以减少听课过程中的盲目性和被动性,有助于提高课堂效率。预习后把自己理解了的知识与老师的讲解进行比较、分析即可提高自己思维水平,预习还可以培养自己的自学能力。
2、听课过程中要聚精会神、全神贯注,不能开小差。全神贯注就是全身心地投入课堂学习,做到耳到、眼到、心到、口到、手到。若能做到这“五到”,精力便会高度集中,课堂所学的一切重要内容便会在自己头脑中留下深刻的印象。要保证听课过程中能全神贯注,不开小差。上课前必须注意课间十分钟的休息,不应做过于激烈的体育运动或激烈争论或看小说或做作业等,以免上课后还气喘嘘嘘,想入非非,而不能平静下来,甚至大脑开始休眠。所以应做好课前的物质准备和精神准备。
3、特别注意老师讲课的开头和结尾。老师讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。
4、作好笔记。笔记不是记录而是将上述听课中的重点,难点等作出简单扼要的记录,记下讲课的要点以及自己的感受或有创新思维的见解。以便复习,消化。
5、要认真审题,理解物理情境、物理过程,注重分析问题的思路和解决问题的方法,坚持下去,就一定能举一反三,提高迁移知识和解决问题的能力。
四、做好复习和总结工作。
1、做好及时的复习。上完课的当天,必须做好当天的复习。复习的有效方法不只是一遍遍地看书和笔记,而最好是采取回忆式的复习:先把书、笔记合起来回忆上课时老师讲的内容,例如:分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些。然后打开书和笔记本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容巩固下来了,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。
2、做好章节复习。学习一章后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善,而后应做好章节总节。
3、做好章节总结。章节总结内容应包括以下部分。 本章的知识网络。
主要内容,定理、定律、公式、解题的基本思路和方法、常规典型题型、物理模型等。自我体会:对本章内,自己做错的典型问题应有记载,分析其原因及正确答案,应记录下来本章觉得最有价值的思路方法或例题,以及还存在的未解决的问题,以便今后将其补上。
4、做好全面复习。为了防止前面所学知识的遗忘,每隔一段时间,最好不要超过十天,将前面学过的所有知识复习一篇,可以通过看书、看笔记、做题、反思等方式。
五、正确处理好练习题。有不少同学把提物理成绩的希望寄托在大量做题上,搞题海战术。这是不妥当的,“不要以做题多少论英雄”,重要的不在做题多,而在于做题的效益要高、目的要达到。做题的目的在于检查学过的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。而对于中档题,尢其要讲究做题的效益,即做题后有多大收获,这就需要在做题后进行一定的“反思”,思考一下本题所用的基础知识,主要针对的知识点,选用哪些物理规律,是否还有别的解法,本题的分析方法与解法,在解其它问题时,是否也用到过,把它们联系起来,你就会得到更多的经验和教训,更重要的是养成善于思考的好习惯,这将大大有利于你今后的学习。当然没有一定量(老师布置的作业量)的练习就不能形成技能,也是不行的。另外,就是无论是作业还是测验,都应把准确性放在第一位,方法放在第一位,而不是一味地去追求速度,也是学好物理的重要方面。
六.还要重视观察和实验。物理知识来源于实践,特别是来源于观察和实验。要认真观察物理现象,分析物理现象产生的条件和原因。要认真做好物理学生实验,学会使用仪器和处理数据,了解用实验研究问题的基本方法。要通过观察和实验,有意识地提高自己的观察能力和实验能力。总之,只要我们虚心好学,积极主动,踏实认真,在对知识的理解上下功夫,要多思考,多研究,讲求科学的学习方法,多联系生活、生产实际,注重知识的应用,是一定能够学好高中物理的。

学习方法方面,建议看看中科院推出的学习方法讲座光盘《CVC状元高分学习法》(中国科学文化音像出版社出版),里面融会了400多名高考状元的学习经验,汇聚了16位特级教师及教育专家的精髓,众多的案例说明套用其中方法,可以较快地提高成绩,是中国孩子不应错过的一套光盘,值得推荐。内容如下:
1、学习质量管理:
为学习中的各个环节都提供了方法、制定了标准,用了以后孩子在预习、听课、作业、复习、考试等每一个环节都能得到最好的学习质量,记忆、解题、写作等各个方面都会有巨大提高。
2、各学科学习方法及考试技巧:
对每一门课程、每一个知识点、每一种题型都提出了相应学习技巧和解决思路。如数学 方面的规定法、平移法、变换法,英语方面的能力培养法、 1秒钟记忆法、硬盘式记忆法……

详细请登录:goodcvc * cn

⑽ 如何上好初二物理开学第一课

1、八年级物理教材从全面提高学生素质的要求出发,在知识选材上,适当加强联系实际、适当降低难度,既考虑现代生产拨展与社会生活的需要,又考虑当前大多数初中学生的学习水平的实际可能。

2、在处理方法上,适当加强观察实验,力求生动活泼,既有利于掌握知识,又有利于培养能力、情感和态度,使学生在学习物理的同时,获得素质上的提高。教材把促进学生全面发展作为自己的目标。

3、在内容选配上,注意从物理知识内部发掘政治思想教育和品德教育的潜能,积极推动智力因素和非智力因素的相互作用。

4、在学习方法上,积极创造条件让学生主动学习参与实践,通过学生自己动手、动脑的实际活动,实现学生的全面发展。教科书采用了符合学生认知规律的由易到难、由简到繁,以学习发展水平为线索,兼顾到物理知识结构的体系。



5、这样编排既符合学生认知规律,又保持了知识的结构性。教科书承认学生是学习的主体,把学生当作第一读者,按照学习心理的规律来组织材料。

6、全书共5章以及新增添的物理实践活动和物理科普讲座,每章开头都有几个问题,提示这一章的主要内容并附有章节照片,照片的选取力求具有典型性、启发性和趣味性,使学生学习时心中有数。

7、章下面分节,每节内都有些小标题,帮助学生抓住中心。在引入课题、讲述知识、归纳总结等环节,以及实验、插图、练习中,编排了许多启发性问题,点明思路,引导思考,活跃思维。许多节还编排了“想想议议”, 提出了一些值得思考讨论的问题,促使学生多动脑、多开口。