Ⅰ 小升初数学考试的要点有哪些
大部分孩子都将目光紧盯“小升初”最难的题,但实际上备考关键词依然是抓基础。记者走访的大多小学六年级数学老师均表示,为了考查出大部分考生的能力,“小升初”数学题不可能远离小学基础。因此,无论基础好或差,考生都不能放过课本的基础知识点,不该丢的分都拿到了才是王道。
小学数学的复习要点大致可分为4类:计算类、应用题类、概念类、几何知识类。光明小学6年级数学老师王子军说,小学六年级下学期课本最后一个单元就是总复习,很多学校的老师都会利用这个机会将所有基础知识点分类梳理一遍。学生在学习这个单元时要紧跟老师,将重点要掌握的知识点抓细,做到不遗漏。一次好的总结梳理,就是最好的备考。
Ⅱ 小升初的孩子数学复习都有哪些要点
以下几点复习攻略可以参考对照复习:
一、回归课本为主, 找准备考方向
学生根据自己的丢分情况,找到适合自己的备考方向。 基础差的学生,最好层层追溯到自己学不好的根源。 无论哪个学科, 基本上都是按照教材层层关联的, 希望基础不好的同学以课本为主,配套练习课本后的练习题,以中等题、简单题为辅、 逐渐吃透课本,也渐渐提高信心。只要把基础抓好, 那么考试时除了一些较难的题目, 基本上都可以凭借能力拿下,分数的高低仅剩下发挥的问题。
二、循序渐进,切忌急躁
在复习的时候, 由于是以自己为主导, 有时候复习的版块和教学进度不同,当考试时会发现没有复习到的部分丢分严重。导致成绩不高。 但是已经复习过的版块,却大多能够拿下。这就是进步,不要因为用一时的分数高低做为衡量标准,复习要循序渐进,不要急躁。复习就像修一 条坑坑洼洼的路, 每个坎坷都是障碍,我们只有认真的从起点开始,按照顺序慢慢推平。哪怕前面依旧沟整,但是当你回头的时候,展现在你眼前的是一条康庄大道。基本上, 如果纯做题的话, 1 -2个月时间就能把各科的试题从第一章节到最后一个章节摸得差不多。
三、合理利用作业试题、 试卷
简单题、中等题一方面可以印证、检验自己的基础知识体系, 又一方面可以提升我们复习的信心。在选择作业上,简单题、中等题尤其是概念理解应用题一 定要自己动手做,还要进行总结。 难题可以参考答案, 但要认真思考其中的步骤推导思想和转化思想,这些都是考试所考察的。语文要充分利用试卷,其中的成语、病句要注重收集,文言文虚实词记得要摘录。英语单词注意把正确选项带人念熟。 同时思考阅读、完型题是如何找到有效的原文信息,他们有何特点和提示点? 要这么去利用每一次作业和试卷,那么成绩将会短期内提高。
四、建立信心, 不计一时得失
有些学生自认为自己是差生, 无可救药了。但是事实上往往不是这样。有些学生认为自己天生比别人笨, 不如别人聪明。也许在某一方面上确实是有自身的缺陷,但是却忽略了自己的优势所在。为了自己心中那份或许并不是十分确定的梦想,一定要打起精神。前面也说过,考试不要记一时得失,而是要不断的总结归纳。中等生,只要你不放弃,找到自己的缺陷,严格给自己定下复习要求并认真执行,就能达到。
Ⅲ 小升初数学必考题型有哪些
小升初数学必考题型参考如下,具体以毕业试卷为准。
填空题
▌1、求近似值改写用“万”、“亿”做单位或省略“万”、“亿”后面的尾数或“四舍五入”以及数的组成(必然出现一种)
典型题
(0)七千零三十万四千写作( ),改写用“万”做单位的数是( ),省略“万”后面的尾数是( )。
(1)5个1,16个1/100组成的数是( )。
(2)第五次全国人口普查结果,全国总人口为十二亿九千五百三十三万,这个数写作( ),四舍五入到亿位约是( )。
(3)0.375读作( ),它的计数单位是( )。
(4)付河大桥投资约36250万元,改写成用“亿”作单位的数是( )亿。
(5)用万作单位的准确数5万与进似数5万比较,最多相差( )。
(6)由三个百、六个一、七个十分之一、八个万分之一组成的小数是( ),保留两位小数约是( )。
▌2、找规律 可能考
典型题
找规律:1,3,2,6,4,( ),( ),12,……
▌3、中位数、众数或平均数(必考一题)
典型题
(1)六(3)班同学体重情况如下表
上面这组数据中,平均数是( ),中位数是( ),众数是( )。
(2)甲乙丙三个偶数的平均数是16,三个数的比是3:4:5,甲乙丙三个偶数分别是( )、( )、( )。
(3)有三个数,甲乙两数的平均数是28.5,乙丙两数的平均数是32,甲丙两数的平均数是21,那么甲数是( ),乙数是( )。
▌4、负数正数 (有可能考)
典型题
(1)0、0.9、1、-1、4、103、-320七个数中,( )是自然数,( )是整数。
(2)月球的表面白天的平均气温是零上126摄氏度,记作( )摄氏度,夜间平均气温是零下150摄氏度,记作( )摄氏度。
▌5、倒数 (可能考)
典型题
(1)一个最小的质数,它的倒数是作( )。
(2)6又5/7的倒数是( ),( )的倒数是最小的质数。
▌6、最简比及比值(可能考)
典型题
(1)3/4与0.125的最简整数比是( ),比值是( )。
(2)一个小圆的直径和大圆的半径都是4厘米,大圆与小圆的周长的最简整数比是( ),面积的最简整数比是( )。
▌7、因数倍数 必考一题(重点考质数、合数、偶数、奇数、互质数、最大公因数、最小公倍数)。
典型题
(1)5162至少加上( ),才能被3整除。
(2)互质的两个数的最小公倍数是390,如果这两个数都是合数,则这两个数是( )和( )。
(3)两个数都是合数,又是互质数,它们的最小公倍数是120,这两个数分别是( )和( )。
(4)145□,要使得它能被3整除,□里填的数字( )。
(5)三个质数的积是273,这三个质数的和是( )。
(6)在1~30这些自然数中,既不是3的倍数也不是4的倍数的数有( )个。
(7)在1、2、4、9、11、16等数中,奇数有( ),偶数有( ),质数有( ),合数有( ),既是奇数又是合数的数是( ),既是偶数又是质数的数是( )。
(8)24和30的最大公因数是( ),最小公倍数是( )。
(9)a与b是互质数,则a与b的最大公因数是( ), 最小公倍数是( )。
(10)一个分数的整数部分是自然数中既不是质数也不是合数的数,分数部分的分子是偶数中的质数,分母是10以内的奇数中的合数,这个数是。
(11)8752至少加上( ),才能被2、3、5整除。
Ⅳ 小升初数学复习重点
长度单位换算
1千米=1000米1米=10分米 1分米=10厘米1米=100厘米 1厘米=10毫米
面积单位换算
1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量单位换算
1吨=1000千克 1千克=1000克 1千克=1公斤
人民币单位换算
1元=10角 1角=10分 1元=100分
时间单位换算
1世纪=100年1年=12月
大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天,闰年2月29天 平年全年365天,闰年全年366天
1日=24小时 1时=60分 1分=60秒 1时=3600秒
1 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和 和-一个加数=另一个加数
7 被减数-减数=差 被减数-差=减数 差+减数=被减数
8 因数×因数=积 积÷一个因数=另一个因数
9 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
10 总数÷总份数=平均数
小学数学几何形体周长面积体积计算公式
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a=a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r=d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd=2πr
10、圆的面积=圆周率×半径×半径 S=π r×r
和差问题的公式: (和+差)÷2=大数 (和-差)÷2=小数
和倍问题的公式: 和÷(倍数-1)=小数 小数×倍数=大数
(或者和-小数=大数)
差倍问题的公式: 差÷(倍数-1)=小数 小数×倍数=大数
(或小数+差=大数)
植树问题
1.非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2.封闭线路上的植树问题的数量关系如下:
株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数
盈亏问题 利润问题
(盈+亏)÷两次分配量之差=参加分配的份数 利润=售出价-成本价(进价)
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题 追及问题
相遇路程=速度和×相遇时间 追及距离=速度差×追及时间
相遇时间=相遇路程÷速度和 追及时间=追及距离÷速度差
速度和=相遇路程÷相遇时间 速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2
Ⅳ 小升初数学考试知识点讲解
小升初数学知识体系包含一下七个模块:
1.应用题
2.行程问题
3.几何
4.数论
5.计算
6.计数
7.组合
这里发不大图,详细内容请点击链接进入W❤,“家校在线”
Ⅵ 小升初数学知识点
背公式啦
Ⅶ 北师大版小升初数学知识点
考点1 简易方程
一.用字母表示数
1.含有字母的式子不仅可以表示数量关系,也可以表示数量.
2.含有字母的式子还可以简明、概括地表达运算定律和计算公式,方便研究和解决实际问题.
3.如果知道给出的式子中每个字母表示的数是多少,就可以算出这个这个式子表示的数值是多少.
注意:
1.含有字母的式子中,数字和字母、字母和字母相乘时,乘号也可以记作“•”,也可以省略不写.在省略乘号的时候,应把数字写在字母的前面.例如:a×4可以写成“a•4”或“4a”.
2.当“1”和任何字母相乘时,“1”可以省略不写.例如:a×1都写成“a”而不写成“1a”.
3.由于字母可以表示任意数,在一些式子中,对字母表示数的要进行说明.例如:7/a(a≠0).
4.因为字母表示的是数,所以在式子中每一个字母都不注明单位名称,计算结果也不注明单位名称,只在答句中写上单位名称.
二.简易方程
1.表示相等关系的式子叫做等式.
2.含有未知数的等式叫方程
3.一个等式由“等式的左边”、“等式的右边”、“等号”三部分组成.例如:23+30=53,x+6=12都是等式.7+8、4x-2、x-7﹥9等都不是等式.在x+6=12这个等式中,因为含有未知数,所以它是方程.等式不一定是方程,但方程一定是等式.它们的关系如下图所示:
4.使方程左右两边相等的未知数的值叫做方程的解.如:x=10,使方程4x-10=30左右两边相等,所以x=10就是方程4x-10=30的解.
5.求方程的解的过程叫做解方程.
6.方程的解是一个值,解方程是求方程的解的演算过程.
7.在小学阶段解简易方程主要运算用加、减、乘、除法互逆的关系.
关系如下:
(1) 一个加数=和-另一个加数
(2) 被减数=差+减数
(3) 减数=被减数-差
(4) 一个因数=积÷另一个因数
(5) 被除数=商×除数
(6) 除数=被除数÷商
8.求出未知数的值分别代入原方程的两边(即求含有字母的式子的值),如果原方程等号左右两边相等,则所求得的未知数的值是原方程的解.
考点二 比和比例
知识要点
一.比和比例的意义和性质
1.比和比例的意义:
(1)两个数相除又叫做这两个数相比.
(2)这里的两个数,可以是同类量,也可以是不同类量.
(3)表示两个比相等的式子叫做比例.
2.基本性质:
(1)比的前项和后项同时乘或除以相同的数(零除外),比值不变.在比例里,两个内项的积等于两个外项的积.
3.比和比例的联系和区别:
(1)联系:
比和比例有密切的联系,比例由两个相等的比组成.
(2)区别:
比表示两个数相处,表述的是两个数(量)关系的一种形式.有两项(前项和后项).
比例是一个等式,表示两个比相等.有四项(两个内项、两个外项).
二.比、分数和除法的关系
名 称 意 义 各部分名称(相互关系)
比a :b或
a
b 表示两个数相除 前 项 比 号 后 项 比 值
a
b 表示一个数 分 子 分数线 分 母 分数值
除法
a÷b 表示一种运算 被除数 除 号 除 数 商
1.比的后项、分母、除数都不能为0.
2.比和平常比赛中的“几比几”的意义不同.
3.求比值和化简比的区别与联系
意 义 方 法 结 果
求比值 前项除以后项所得的商 用前项除以后项 一个数,可以是整数、分数或小数
化简比 把两个数的比化成最简单的整数比.1.前项和后项同时乘或除以同一个数(零除外)
2.也可以先求出比值,再将比值写成最简比
一个比
三.组比例和解比例
根据比例的基本性质,可以判断两个比能不能组成比例,还可以求比例中的未知数,即解比例.
1.组比例:判断两个比能否组成比例,一种方法是求两个比的比值,若比值相等,就可以组成比例;另一种方法是先假设两个比已经组成比例,求出外项的积和内项的积,如果相等,则能组成比例.
2.解比例:求比值中的未知数,叫做解比例.
四.正比例和反比例的区别和联系
名 称 正 比 例 反 比 例
意 义 相 同 点 两种相关联的量,一个量变化,另一个量也随着变化
不 同 点 两种量中相对应的两个数的比值(也就是商)一定 两种量中相对应的两个数的积一定
关 系 式 x/y=k(一定) x•y=k(一定)
1.判断两种量是正比例、反比例或不成比例的方法:
(1) 找出两种相关联的量.
(2) 根据两种相关联的量之间的关系列出数量关系式.
(3) 如果两种量中相对应的两个数的比值(也就是商)一定,就是成正比例的量;若是积一定,就是成反比例的量.
五.比例尺
1.图上距离和实际距离的比,叫做这幅图的比例尺.
即:图上距离﹕实际距离=比例尺
图上距离/实际距离=比例尺