Ⅰ 成人高考高等数学二,什么都不会,有没有得分窍门,怎样复习150分能得30分我就知足。。
现在很多的同学数学的分数都不是很高,这拉低的整体的平均分,所以很多的学生都会是做很多的练习题来改善这种问题,那么初中数学练习题做的越多分数就会越高吗?
数学习题
在做初中数学练习题的时候,家长不可以让孩子做的过于多,需要给孩子一定的休息时间,以防止孩子出现过度劳累的情况,这样只会让分数出现下降并不会有上升的情况,所以只有详细的制定计划之后才可以在一定的程度上改善孩子的分数问题,还可以改善孩子的学习习惯,这对于孩子的以后有非常大的影响.
Ⅱ 成人高考的高数二是什么内容
高等数学二是微积分和概率 没有线性代数 你要是考高等数学二的话,你就买一本最新的就行,哪一年报的就买哪一年的书
Ⅲ 成考高数二拿分技巧
成人高考高数二如何拿高分
在做题的过程中,你要熟练地运用那些公式。做完题了,有时间就多看看课本的公式。(可六十五分以上)如果想高分,就买相关配套的练习并将它也弄懂。一般地,这么多的问题都做完的话,而且是正确地熟练地完成的话,八十五分以上是没问题。
基本概念要一个字一个字理解并记忆,要准确掌握基本概念的内涵外延。只有思维钻进去才能了解内涵,思维要发散才能了解外延。只有概念过关,做题才能又快又准。尽管工作和学习都很忙碌繁琐,但相关教材上的习题都应该抽取一定的时间认真完成,不要为节省时间而省略做题步骤。每次作业都是一次检验的机会,越早发现问题,就能越早制定相应计划去完善。
成考高数二知识点笔记整理
(一)函数
1、知识范围
(1)函数的概念
函数的定义、函数的表示法、分段函数、隐函数
(2)函数的性质
单调性、奇偶性、有界性、周期性
(3)反函数
反函数的定义、反函数的图像
(4)基本初等函数
幂函数、指数函数、对数函数、三角函数、反三角函数
(5)函数的四则运算与复合运算
(6)初等函数
2、要求
(1)理解函数的概念,会求函数的表达式、定义域及函数值,会求分段函数的定义域、函数值,会作出简单的分段函数的图像。
(2)理解函数的单调性、奇偶性、有界性和周期性。
(3)了解函数与其反函数之间的关系(定义域、值域、图像),会求单调函数的反函数。
(4)熟练掌握函数的四则运算与复合运算。
(5)掌握基本初等函数的性质及其图像。
(6)了解初等函数的概念。
(7)会建立简单实际问题的函数关系式。
(二)极限
1、知识范围
(1)数列极限的概念
数列、数列极限的定义
(2)数列极限的性质
唯一性、有界性、四则运算法则、夹通定理、单调有界数列极限存在定理
(3)函数极限的概念
函数在一点处极限的定义、左、右极限及其与极限的关系趋于无穷时函数的极限、函数极限的几何意义
(4)函数极限的性质
唯一性、四则运算法则、夹通定理
(5)无穷小量与无穷大量
无穷小量与无穷大量的定义、无穷小量与无穷大量的关系、无穷小量的性质、无穷小量的阶
(6)两个重要极限
2、要求
(1)理解极限的概念,会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解极限的有关性质,掌握极限的四则运算法则。
(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。
(4)熟练掌握用两个重要极限求极限的方法。
Ⅳ 成人高考里高数二的复习内容
饿。这里发太多的话网络不让发。给你地址也可
Ⅳ 成人高考上的高数一和高数二怎么分的,什么人要考高数一,什么人要考高数二
注意以《大纲》为依据,弄清《高等数学》(一)和《高等数学》(二)在知识内容及相关考核要求上的区别。
这种区别主要体现在两个方面:其一是在共有知识内容方面,同一章中要求掌握的知识点,或同一知识点要求掌握的程度不尽相同。如在一元函数微分学中,《高等数学》(一)要求掌握求反函数的导数、掌握求由参数方程所确定的函数的求导方法,会求简单函数的n阶导数,理解罗尔定理、拉格朗日中值定理,但上述知识点对《高等数学》(二)并不做要求;又如在一元函数积分学中,《高等数学》(一)要求掌握三角换元求不定积分,其中包括正弦变换、正切变换和正割变换,而《高等数学》(二)对正割变换不做考核要求。其二是在不同的知识内容方面,《高等数学》(一)考核内容中有二重积分,而《高等数学》(二)对二重积分并不做考核要求;再有《高等数学》(一)有无穷级数、常微分方程,高数(二)均不做要求。从试卷中可以看出,高等数学(一)比《高等数学》(二)多出来的这部分知识点,在考题中大约能占到30%的比例。共计45分左右。所以理科、工科类考生应按照《大纲》的要求全面认真复习。
Ⅵ 成人高考高等数学二如何复习
一般地,你对高等数学二课本的例题会懂,会做,并且课本后面的练习题会做及章后的练习题会做,就差不多了。
在做题的过程中,你要熟练地运用那些公式。
做完题了,有时间就多看看课本的公式。。(可六十五分以上)
如果想高分,就买相关配套的练习并将它也弄懂。
一般地,这么多的问题都做完的话,而且是正确地熟练地完成的话,八十五分以上是没问题。
Ⅶ 求成人高考高数(二)的复习资料和公式
(1)抛物线
y = ax^2 + bx + c (a≠0)
就是y等于a乘以x 的平方加上 b乘以x再加上 c
置于平面直角坐标系中
a > 0时开口向上
a < 0时开口向下
(a=0时为一元一次函数)
c>0时函数图像与y轴正方向相交
c< 0时函数图像与y轴负方向相交
c = 0时抛物线经过原点
b = 0时抛物线对称轴为y轴
(当然a=0且b≠0时该函数为一次函数)
还有顶点公式y = a(x+h)* 2+ k ,(h,k)=(-b/(2a),(4ac-b^2)/(4a))
就是y等于a乘以(x+h)的平方+k
-h是顶点坐标的x
k是顶点坐标的y
一般用于求最大值与最小值和对称轴
抛物线标准方程:y^2=2px
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
(2)圆
球体积=(4/3)π(r^3)
面积=π(r^2)
周长=2πr =πd
圆的标准方程 (x-a)^2+(y-b)^2=r^2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D^2+E^2-4F>0
(一)椭圆周长计算公式
椭圆周长公式:L=2πb+4(a-b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式
椭圆面积公式: S=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。
椭球物体 体积计算公式椭圆 的 长半径*短半径*π*高
(3)三角函数
和差角公式
sin(A+B)=sinAcosB+cosAsinB ;sin(A-B)=sinAcosB - sinBcosA ;
cos(A+B)=cosAcosB - sinAsinB ;cos(A-B)=cosAcosB + sinAsinB ;
tan(A+B)=(tanA+tanB)/(1-tanAtanB);tan(A-B)=(tanA-tanB)/(1+tanAtanB) ;
cot(A+B)=(cosAcotB-1)/(cosB+cotA) ;cot(A-B)=(cosAcotB+1)/(cosB-cotA) ;
倍角公式
tan2A=2tanA/(1-tan^2A) ;cot2A=(cot^2A-1)/2cota ;
cos2a=cos^2a-sin^2a=2cos^2a-1=1-2sin^2a ;
sin2A=2sinAcosA=2/(tanA+cotA);
另:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 ;
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 ;
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0;
四倍角公式:
sin4A=-4*(cosA*sinA*(2*sinA^2-1))
cos4A=1+(-8*cosA^2+8*cosA^4)
tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)
五倍角公式:
sin5A=16sinA^5-20sinA^3+5sinA
cos5A=16cosA^5-20cosA^3+5cosA
tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)
六倍角公式:
sin6A=2*(cosA*sinA)*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))
cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))
tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)
七倍角公式:
sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))
cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))
tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)
八倍角公式:
sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))
cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)
tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)
九倍角公式:
sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))
cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))
tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)
十倍角公式:
sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))
cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))
tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)
万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B); 2cosAsinB=sin(A+B)-sin(A-B) ;
2cosAcosB=cos(A+B)+cos(A-B) ;-2sinAsinB=cos(A+B)-cos(A-B) ;
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 ;cosA+cosB=2cos((A+B)/2)sin((A-B)/2) ;
tanA+tanB=sin(A+B)/cosAcosB; tanA-tanB=sin(A-B)/cosAcosB ;
cotA+cotB=sin(A+B)/sinAsinB; -cotA+cotB=sin(A+B)/sinAsinB ;
降幂公式
sin²(A)=(1-cos(2A))/2=versin(2A)/2;
cos²(α)=(1+cos(2A))/2=covers(2A)/2;
tan²(α)=(1-cos(2A))/(1+cos(2A));
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角
(4)反三角函数
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
(5)数列
等差数列通项公式:an=a1+(n-1)d
等差数列前n项和:Sn=[n(A1+An)]/2 =nA1+[n(n-1)d]/2
等比数列通项公式:an=a1*q^(n-1);
等比数列前n项和:Sn=a1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =a1/(1-q)-a1/(1-q)*q^n (n≠1)
某些数列前n项和:
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n^2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
(6)乘法与因式分解
因式分解
a^2-b^2=(a+b)(a-b)
a^2±2ab+b^2=(a±b)^2
a^3+b^3=(a+b)(a^2-ab+b^2)
a^3-b^3=(a-b)(a^2+ab+b^2)
a^3±3a^2b+3ab^2±b^3=(a±b)^3
乘法公式
把上面的因式分解公式左边和右边颠倒过来就是乘法公式
(7)三角不等式
-|a|≤a≤|a|
|a|≤b<=>-b≤a≤b
|a|≤b<=>-b≤a≤b
|a|-|b|≤|a+b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a|-|b|≤|a-b|≤|a|+|b|
|z1|-|z2|-...-|zn|≤|z1+z2+...+zn|≤|z1|+|z2|+...+|zn|
|z1|-|z2|-...-|zn|≤|z1-z2-...-zn|≤|z1|+|z2|+...+|zn|
|z1|-|z2|-...-|zn|≤|z1±z2±...±zn|≤|z1|+|z2|+...+|zn|
(8)一元二次方程
一元二次方程的解wx1= -b+√(b^2-4ac)/2a x2= -b-√(b^2-4ac)/2a
根与系数的关系(韦达定理) x1+x2=-b/a ; x1*x2=c/a
判别式△= b^2-4ac=0 则方d程有相等的个实根
△>0 则方程有两个不相等的两实根
△<0 则方程有两共轭复数根d(没有实根)
Ⅷ 成考高数二如何去学习 只要60~70分即可 该把重点放在哪些部分
大一多参加活动 大二注重专业知识 大三多多实习