当前位置:首页 » 基础知识 » 六年级数学必考知识点
扩展阅读
观看消防讲座知识 2025-01-11 02:35:06

六年级数学必考知识点

发布时间: 2022-03-08 22:57:14

① 小学六年级数学毕业考必考的知识点是什么

一、整数和小数

1、最小的一位数是1,最小的自然数是0。

2、小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。

3、小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……

4、整数和小数都是按照十进制计数法写出的数。

5、小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。

6、小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……

小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……

二、数的整除

1、倍数、因数:A÷B=C,A、B、C均为整数,我们就说A能被B整除或B能整除A。如果数a能被数b整除,a就叫做b的倍数,b就叫做a的因数。

2、一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。一个数因数的个数是有限的,最小的因数是1,最大的因数是它本身。一个数既是它本身的因数,也是它本身的倍数。

3、按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

4、按一个数因数的个数,非0自然数可分为1、质数、合数三类。

质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数。质数都有2个因数。合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。合数至少有3个因数。最小的质数是2,最小的合数是4

5、1~20以内的质数有:2、3、5、7、11、13、17、19

1~20以内的合数有“4、6、8、9、10、12、14、15、16、18

“1”既不是质数,也不是合数。

6、2的倍数的数的特征:个位上的数是0、2、4、6、8。

5的倍数的数的特征:个位上的数是0或者5。

3的倍数的数的特征:各个数位上的数的和是3的倍数。

既是3的倍数又是5的倍数的数的特征:个位上的数是“5”。

7、公因数、公倍数:几个数公有的因数,叫做这几个数的公因数;其中最大的一个,叫做这几个数的最大公因数。几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

8、一般关系的两个数的最大公因数、最小公倍数用短除法来求;互质关系的两个数最大公约数是1,最小公倍数是两数之积;倍数关系的两个数的最大公因数是小数,最小公倍数是大数。

11、互质数:公因数只有1的两个数叫做互质数。

12、两数之积等于最小公倍数和最大公约数的积。

三、四则运算

1、一个加数=和—另一个加数被减数=差+减数减数=被减数-差

一个因数=积÷另一个因数被除数=商×除数除数=被除数÷商

2、在四则运算中,加、减法叫做第一级运算,乘、除法叫做第二级运算。

3、运算定律:

(1)加法交换律:a+b=b+a乘法交换律:a×b=b×a

两个数相加,交换加数的位置,它们的和不变。

两个数相加,交换因数的位置,它们的积不变。

(2)加法结合律:(a+b)+c=a+(b+c)乘法结合律:(a×b)×c=a×(b×c)

三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。

三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变。

(3)乘法分配律:(a+b)×c=a×c+b×c

两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

(4)减法的性质:a-b-c=a-(b+c)除法的性质:a÷b÷c=a÷(b×c)

从一个数里连续减去两个数,等于从这个数里减去两个减数的和。

一个数连续除以两个数,等于这个数除以两个除数的积。

四 、两个规律

1、除法的商不变规律:被除数和除数同时乘或除以相同的数(0除外),商不变。

2、乘法的积不变规律:如果一个因数乘几,另一个因数则除以几,那么它们的积不变。

3、一个因数乘以比1大的数,积比这个数大,乘以比1小的数,积比这个数小

一个因数除以比1大的数,商比这个数小,除以比1小的数,商比这个数大

五、关系式

速度×时间=路程

路程÷时间=速度

路程÷速度=时间

工作效率×工作时间=工作总量

工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

单价×数量=总价

总价÷数量=单价

总价÷单价=数量

② 小学六年级上册数学必考知识点有哪些

第一单元分数乘法

(一)分数乘法意义:

1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。"分数乘整数"指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

"一个数乘分数"指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

(二)分数乘法计算法则:

1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)

(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以相同的数(0除外),分数的大小不变。

(三)积与因数的关系:

一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b <1时,c<a(b≠0)。

一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算

1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:a×(b±c)=a×b±a×c

(五)倒数的意义:乘积为1的两个数互为倒数。

1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)

2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为"1"。例如:a×b=1则a、b互为倒数。

3、求倒数的方法:①求分数的倒数:交换分子、分母的位置。

②求整数的倒数:整数分之1。③求带分数的倒数:先化成假分数,再求倒数。

④求小数的倒数:先化成分数再求倒数。

4、1的倒数是它本身,因为1×1=1

0没有倒数,因为任何数乘0积都是0,且0不能作分母。

5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。

假分数的倒数小于或等于1。带分数的倒数小于1。

(六)分数乘法应用题--用分数乘法解决问题

1、求一个数的几分之几是多少?(用乘法)

已知单位"1"的量,求单位"1"的量的几分之几是多少,用单位"1"的量与分数相乘。

2、巧找单位"1"的量:在含有分数(分率)的语句中,分率前面的量就是单位"1"对应的量,或者"占""是""比"字后面的量是单位"1"。

3、什么是速度?

速度是单位时间内行驶的路程。速度=路程÷时间时间=路程÷速度路程=速度×时间

单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。

4、求甲比乙多(少)几分之几?

多:(甲-乙)÷乙少:(乙-甲)÷乙

第二单元位置与方向(二)1、什么是数对?

数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即"先列后行"。

数对的作用:确定一个点的位置。经度和纬度就是这个原理。

2、确定物体位置的方法:

(1)、先找观测点;(2)、再定方向(看方向夹角的度数);(3)、最后确定距离(看比例尺)。

描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。

位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。

相对位置:东--西;南--北;南偏东--北偏西。

第三单元分数的除法

一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。

二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。

1、被除数÷除数=被除数×除数的倒数。

2、除法转化成乘法时,被除数一定不能变,"÷"变成"×",除数变成它的倒数。

3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。

4、被除数与商的变化规律:

①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c<a (a≠0)

②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0 b≠0)

③除以等于1的数,商等于被除数:a÷b=c当b=1时,c=a

三、分数除法混合运算

1、混合运算用梯等式计算,等号写在第一个数字的左下角。

2、运算顺序:

①连除:同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据"除以几个数,等于乘上这几个数的积"的简便方法计算。加、减法为一级运算,乘、除法为二级运算。

②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。

(a±b)÷c=a÷c±b÷c

第四单元比

比:两个数相除也叫两个数的比

1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

连比如:3:4:5读作:3比4比5

2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。

例:12∶20==12÷20==0.612∶20读作:12比20

区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。

比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。

3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

4、化简比:化简之后结果还是一个比,不是一个数。

(1)、用比的前项和后项同时除以它们的最大公约数。

(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。

(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。

5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

6、比和除法、分数的区别:

除法:被除数除号(÷)除数(不能为0)商不变性质除法是一种运算

分数:分子分数线(-)分母(不能为0)分数的基本性质分数是一个数

比:前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系

商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

分数除法和比的应用

1、已知单位"1"的量用乘法。

2、未知单位"1"的量用除法。

3、分数应用题基本数量关系(把分数看成比)

(1)甲是乙的几分之几?

甲=乙×几分之几乙=甲÷几分之几几分之几=甲÷乙

(2)甲比乙多(少)几分之几?

4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。

5、画线段图:

(1)找出单位"1"的量,先画出单位"1",标出已知和未知。

(2)分析数量关系。(3)找等量关系。(4)列方程。

两个量的关系画两条线段图,部分和整体的关系画一条线段图。

第五单元圆

一、圆的特征

1、圆是平面内封闭曲线围成的平面图形。

2、圆的特征:外形美观,易滚动。

3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。

半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。

直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。

同圆或等圆内直径是半径的2倍:d=2r或r=d÷2

4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。

同心圆:圆心重合、半径不等的两个圆叫做同心圆。

5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。

有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

有二条对称轴的图形:长方形

有三条对称轴的图形:等边三角形

有四条对称轴的图形:正方形

有无条对称轴的图形:圆,圆环

6、画圆

(1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。

二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

1、圆的周长总是直径的三倍多一些。

2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

即:圆周率π=周长÷直径≈3.14

所以,圆的周长(c)=直径(d)×圆周率(π)-周长公式:c=πd,c=2πr

圆周率π是一个无限不循环小数,3.14是近似值。

3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

4、半圆周长=圆周长一半+直径=πr+d

三、圆的面积s

1、圆面积公式的推导

如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

圆的半径=长方形的宽

圆的周长的一半=长方形的长

长方形面积=长×宽

所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)

S圆=πr×r=πr2

2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。

周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。

3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。

4、环形面积=大圆-小圆=πR2-πr2

扇形面积=πr2×n÷360(n表示扇形圆心角的度数)

5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。

一个圆的半径增加a厘米,周长就增加2πa厘米。

一个圆的直径增加b厘米,周长就增加πb厘米。

6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π。

7、常用数据

π=3.142π=6.283π=9.424π=12.565π=15.7

第六单元百分数(一)

一、百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。

注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。

1、百分数和分数的区别和联系:

(1)联系:都可以用来表示两个量的倍比关系。

(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。

注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成"%"才是百分数,所以"分母是100的分数就是百分数"这句话是错误的。"%"的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。

2、小数、分数、百分数之间的互化

(1)百分数化小数:小数点向左移动两位,去掉"%"。

(2)小数化百分数:小数点向右移动两位,添上"%"。

(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。

(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。

(5)小数化分数:把小数成分母是10、100、1000等的分数再化简。

(6)分数化小数:分子除以分母。

二、百分数应用题

1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。

2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

求甲比乙多百分之几:(甲-乙)÷乙

求乙比甲少百分之几:(甲-乙)÷甲

3、求一个数的百分之几是多少。一个数(单位"1")×百分率

3、已知一个数的百分之几是多少,求这个数。

部分量÷百分率=一个数(单位"1")

5、百分数应用题型分类

(1)求甲是乙的百分之几--(甲÷乙)×100%=百分之几

(2)求甲比乙多百分之几--(甲-乙)÷乙×100%

(3)求甲比乙少百分之几--(乙-甲)÷乙×100%

第七单元扇形统计图的意义

1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。

2、常用统计图的优点:

(1)条形统计图直观显示每个数量的多少。

(2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。

(3)扇形统计图直观显示部分和总量的关系。

③ 六年级数学总复习重点知识

长方形和平行四边形一样的
在周长相同的所有图形中,圆面积最大。
望采纳

④ 6年级数学重点知识有哪些

6年级数学重点知识:

一、常用的数量关系式

1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

3、速度×时间=路程路程÷速度=时间路程÷时间=速度

4、单价×数量=总价总价÷单价=数量总价÷数量=单价

5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率

6、加数+加数=和和-一个加数=另一个加数

7、被减数-减数=差被减数-差=减数差+减数=被减数

8、因数×因数=积积÷一个因数=另一个因数

9、被除数÷除数=商被除数÷商=除数商×除数=被除数

二、表面积和体积

1、三角形的面积=底×高÷2。公式S=a×h÷2

2、正方形的面积=边长×边长公式S=a2

3、长方形的面积=长×宽公式S=a×b

4、平行四边形的面积=底×高公式S=a×h

5、梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2

6、内角和:三角形的内角和=180度。

7、长方体的表面积=(长×宽+长×高+宽×高)×2公式:S=(a×b+a×c+b×c)×2

8、正方体的表面积=棱长×棱长×6公式:S=6a2

9、长方体的体积=长×宽×高公式:V=abh

10、长方体(或正方体)的体积=底面积×高公式:V=abh

11、正方体的体积=棱长×棱长×棱长公式:V=a3

12、圆的周长=直径×π公式:L=πd=2πr

13、圆的面积=半径×半径×π公式:S=πr2

14、圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

15、圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2

16、圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

17、圆锥的体积=1/3底面×积高。公式:V=1/3Sh

三、求倒数的方法

1、求分数的倒数:交换分子、分母的位置

2、求整数的倒数:整数分之1

3、求带分数的倒数:先化成假分数,再求倒数

4、求小数的倒数:先化成分数再求倒数

⑤ 六年级数学上册必考知识点有哪些

六年级数学上册必考知识点:

1、分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2、分数乘法的计算法则

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零.。

3、分数乘法意义

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4、分数乘整数:数形结合、转化化归。

5、倒数:乘积是1的两个数叫做互为倒数。

6、分数的倒数

找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7、整数的倒数

找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。

8、小数的倒数的普通算法:找一个小数的倒数,例如0.25,把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1。

9、用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。

10、分数除法:分数除法是分数乘法的逆运算。

11、分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13、分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14、比和比例比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种;比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同。

所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个。

15、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的性质用于化简比。比表示两个数相除;只有两个项:比的前项和后项。比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。

⑥ 六年级上册数学重点知识点有哪些

六年级上册数学重点知识点:

1、分数乘法的意义。

(1)分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。

(2)分数乘分数是求一个数的几分之几是多少。

2、分数乘法的计算法则。

(1)分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(2)分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a×b=b×d

乘法结合律: a×b×c=a×(b×c)

乘法分配律:a×(b+c)=ab+ac 或a×(b-c)=ab-ac

4、分数除法的意义

分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。

规律(分数除法比较大小时):

(1)当除数大于1,商小于被除数;

(2)当除数小于1(不等于0),商大于被除数;

(3)当除数等于1,商等于被除数。

⑦ 六年级下册数学必考重点有哪些

一、负数

1、在熟悉的生活情境中初步认识负数,能正确的读.写正数和负数,知道0既不是正数也不是负数。

2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。

3、能借助数轴初步学会比较正数.0和负数之间的大小。

二、圆柱和圆锥

1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面.侧面和高。认识圆锥的底面和高。

2、探索并掌握圆柱的侧面积.表面积的计算方法,以及圆柱.圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

3、通过观察,设计和制作圆柱,圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

三、比例

1、理解比例的意义和基本性质,会解比例。

2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育

四、统计

1、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。

2、能根据统计图提供的信息,做出正确的判断或简单预测。

五、数学广角

1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2、通过“抽屉原理”的灵活应用感受数学的魅力。

⑧ 小学六年级上册数学必考知识点有哪些

一、运算定律或性质

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

乘法交换律:ab=ba

乘法结合律:(ab)c=a(bc)

乘法分配律:a(b+c)=ab+ac

二、几何图形计算公式

周长:即围绕物体一周的长度。

①长方形周长=(长+宽)×2 C=(a+b)×2

②正方形周长=边长×4 C=4a

③圆的周长=圆周率×直径=圆周率×半径×2 C=πd C =2πr

面积:即物体的表面或封闭图形的大小

①长方形的面积=长×宽S=ab

②正方形的面积=边长×边长S=a•a=a2

③平行四边形的面积=底×高S=ah

④三角形的面积=底×高÷2 S=ah÷2

三、数量关系式

1、每份数×份数=总数

总数÷每份数=份数

总数÷份数=每份数

2、单价×数量=总价

总价÷单价=数量

总价÷数量=单价

3、速度×时间=路程

路程÷速度=时间

路程÷时间=速度

四、分数乘法的算法:

1、分数与整数相乘,分子与整数相乘的积做分子,分母不变。

2、分数与分数相乘,用分子相乘的积做分子,分母相乘的积做分母。

分数的化简:分子、分母同时除以它们的最大公因数。

五、分数除法

分数除法是分数乘法的逆运算,就是已知两个数的积与其中一个因数,求另一个因数的运算。除以一个数是乘这个数的倒数,除以几就是乘这个数的几分之一。

比:两个数相除也叫两个数的比。比表示两个数的关系,可以写成比的形式,也可以用分数表示,但仍读几比几。注:10/2=5/1,表示比读5比1,19:2=5,是比值,比值是一个数,可以是整数,分数,也可以是小数。

⑨ 六年级数学上册必考知识点是什么

【常用的数量关系】

1、每份数×份数=总数; 总数÷每份数=份数 ; 总数÷份数=每份数。

2、1倍数×倍数=几倍数; 几倍数÷1倍数=倍数; 几倍数÷倍数=1倍数。

3、速度×时间=路程 ; 路程÷速度=时间 ; 路程÷时间=速度。

4、单价×数量=总价; 总价÷单价=数量 ; 总价÷数量=单价。

5、工作效率×工作时间=工作总量; 工作总量÷工作效率=工作时间。

工作总量÷工作时间=工作效率。

6、加数+加数=和; 和-一个加数=另一个加数。

7、被减数-减数=差; 被减数-差=减数; 差+减数=被减数。

8、因数×因数=积; 积÷一个因数=另一个因数。

9、被除数÷除数=商 ; 被除数÷商=除数; 商×除数=被除数。

【小学数学图形计算公式】

1、正方形(C:周长, S:面积, a:边长)。

周长=边长×4; C=4a。

面积=边长×边长; S=a×a。

2、正方体(V:体积, a:棱长)。

表面积=棱长×棱长×6; S表=a×a×6。

体积=棱长×棱长×棱长; V= a×a×a。

3、长方形(C:周长, S:面积, a:边长, b:宽 )。

周长=(长+宽)×2; C=2(a+b)。

面积=长×宽 ; S=a×b。

4、长方体(V:体积, S:面积, a:长, b:宽, h:高)。

(1)表面积=(长×宽+长×高+宽×高)×2; S=2(ab+ah+bh)。

(2)体积=长×宽×高; V=abh。

5、三角形(S:面积, a:底, h:高)。

面积=底×高÷2 ; S=ah÷2。

三角形的高=面积×2÷底 三角形的底=面积×2÷高。

6、平行四边形(S:面积, a:底, h:高)。

面积=底×高; S=ah。

7、梯形(S:面积, a:上底, b:下底, h:高)。

面积=(上底+下底)×高÷2; S=(a+b)×h÷2。

8、圆形(S:面积, C:周长,π:圆周率, d:直径, r:半径 )。

(1)周长=π×直径π=2×π×半径; C=πd=2πr。

(2)面积=π×半径×半径; S= πr2。

9、圆柱体(V:体积, S:底面积, C:底面周长, h:高, r:底面半径 )。

(1)侧面积=底面周长×高=Ch=πdh=2πrh。

(2)表面积=侧面积+底面积×2。

(3)体积=底面积×高。

10、圆锥体(V:体积, S:底面积, h:高, r:底面半径 )。

体积=底面积×高÷3。

11、总数÷总份数=平均数。

12、和差问题的公式:已知两数的和及它们的差,求这两个数各是多少的应用题,叫做和差应用题,简称和差问题。

(和+差)÷2=大数; (和-差)÷2=小数。