当前位置:首页 » 基础知识 » 数学趣味小知识
扩展阅读
儿童蛋糕裙子起多少针 2025-01-27 12:35:15
橡皮筋可以怎么玩动漫 2025-01-27 12:33:23
程前教育学什么学历 2025-01-27 12:26:55

数学趣味小知识

发布时间: 2022-02-24 00:48:11

A. 趣味数学的内容

1、我的第一本趣味数学书
《我的第一本趣味数学书》是2012年1月1日中国纺织出版社出版的图书,作者是韩垒。本书通过讨论各种丰富多彩的题目来引导读者了解有趣的数学知识
《我的第一本趣味数学书》讨论了各种看似简单却又蕴含着丰富多彩知识的题目,煞费思考的问题,引人入胜的故事,有趣的难题,各种奇谈怪论,以及从各种日常生活现象或者科学幻想小说里找到的各种出人意料的知识。
《我的第一本趣味数学书》可以提升小读者的逻辑思维能力,教会小读者科学地思考,并且帮助小读者在脑海中创造无数联想,把数学知识与经常碰到的各种生活现象联系起来。
2、什么是数学
《什么是数学》是2012年1月由复旦大学出版社出版发行的图书,作者是[美] R·柯朗 H·罗宾,作品的副标题是《对思想和方法的基本研究》。中国版由左平/张饴慈翻译。
本书是世界着名的数学科普读物,它搜集了许多经典的数学珍品,对整个数学领域中的基本概念与方法,做了精深而生动的阐述。无论是数学专业人士,或是愿意作数学思考者都可以阅读此书。特别对中学数学教师、大学生和高中生,都是一本极好的参考书。
3、趣味数学
趣味数学,作者:灵犀编绘。2004年5月1日重庆出版社出版。
本套书是一套综合性较强的,融知识性,趣味性和参与性于一体的亲子共读读物,适合学龄前的儿童在家长的辅导下阅读。本套书分别从语言,数学,游戏,常识,智力,文学,诗歌七个方面着手,对少儿的智力进行全方位,多角度的训练。
书中“学习指南”栏目首先确定了本单元让小孩掌握的知识。“名师点拔”栏目则是长期从事教学工作的专家结合自身的教学经历,对家长提出了恰当的教育方式,值得借鉴。“拓展练习”栏目则让小孩子参与到图书的内容中,让他们一边思考,一边获得智能的提高和训练。
4、数学动手“做”出来:8岁前,一定要和孩子玩的107个数学游戏
《数学动手“做”出来:8岁前,一定要和孩子玩的107个数学游戏(计算篇)》是一本适合妈妈在家对孩子进行数学辅导的创意教材。它将1~6年级数学中有关计算和测量的58个知识要点、难点,设计成动手操作的游戏。
孩子们通过和妈妈一起动手操作,即能深刻地理解晦涩难懂的数学概念,达到轻松学习数学、爱上数学的效果。《数学动手“做”出来:8岁前,一定要和孩子玩的107个数学游戏(计算篇)》适合即将上小学的5~6岁孩子的家长阅读,也适合一般小学生的家长阅读,尤其适合数学学习吃力的小学生的家长阅读。
同时,《数学动手“做”出来:8岁前,一定要和孩子玩的107个数学游戏(计算篇)》还适合小学数学教育领域的相关人士,包括老师、培训机构人员等作为参考用书。
5、数学的奇妙
《数学的奇妙》是1999年4月1日由上海科技教育出版社出版的图书,作者是西奥妮﹒帕帕斯(美)。
作者序言:《数学的奇妙》在这些想法的世界中探究,揭示数学的魅力对我们生活的影响,并帮助你在你最想不到的地方去发现数学。 很多人认为数学是一门严格的一成不变的课程。任何事情都不能脱离事实。
人类的大脑不断地创造着数学思想和独立于我们世界的迷人的新世界,并且这些思想立刻与我们的世界联系起来,几乎就像有人挥动过魔杖一般。
某一维中的对象是如何消失在另一维中的,任何两点之间怎么总能找到一个新的点,数是怎样运算的,方程是怎样解出的,坐标如何产生图像,如何用无穷解题,公式如何生成——所有这些似乎都具有一种奇妙的性质。

B. 求数学趣味小知识

九九歌

九九歌就是我们现在使用的乘法口诀。
远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多着作中,都有关于九九歌的记载。最初的九九歌是从"九九八十一"起到"二二如四"止,共36句。因为是从"九九八十一"开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到"一一如一"。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从"一一如一"起到"九九八十一"止。
现在我国使用的乘法口诀有两种,一种是45句的,通常称为"小九九";还有一种是81句的,通常称为"大九九"。

阿拉伯数字

在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗?

这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做"阿拉伯数字",因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。

现在,阿拉伯数字已成了全世界通用的数字符

C. 数学趣味小知识.五十字左右.别太多也别太少.

数学趣味小知识 有趣的222
从1、2、……9这九个数中任取三个数,如6、1、7,然后将这三个数不同的排列,列出由这三个数组成的所有的三位数,把列出来的所有三位数相加,得到的和再除以这三个数字的和,它们的商一定是222.不信你试试
如:(617+671+167+176+761+716)÷(6+1+7)=222

D. 趣味数学知识

.四个连续自然数的积是5038,这四个连续自然数分别是( ),( ),( )。

2.一个口袋有红,黄,蓝,三种颜色的小球各10个,要一次摸出相同颜色的小球,一次至少要摸出( )个球。

3.有下面两组数:
甲组:1、3、5、7、9、11、13、15、17、19
乙组:2、4、6、8、10、12、14、16、18、20
每次分别从甲、乙两组中各去一个数相加求和,不同的结果有( )个。

4.一个服装的工人每人每天可以生产4件上衣或7条裤子,一件上衣和一条裤子为一套服装。现有66名工人生产,每天最多能生产多少套服装?
问题补充:5、小王有三本集邮册,全部邮票的五分之一在第一本上,N除以8(N为非零自然数)在第二本上,剩余的39张在第三本上。小王有多少张邮票?

6.小明看着自己的成绩表预测:如果下次数学考试100分,那么总平均分是91分,如果下次考80分,那么数学总平均成绩是86分,小明数学统计表是已经有几次考试?

7.一个数乘以三分之四,粗心的小明把三分之四看成了四分之三。正确答案应该是多少?

小李和小王到书店买各同一本书,可是他们带的钱都不够,小李差4.5元,小王差0.6元,两人就决定和买一本,钱刚好够,这本书多少钱?
1 由于一个10,三个9相乘得7290超过5038,可知,此四个数最大不超过10.
假设这四个数,最大为10,则其余三个为7,8,9.
此四个数相乘得 7×8×9×10=5040
若这四个数中最大数为9,则其余三个为6,7,8.
此四个数相乘得 6×7×8×9=3024
由此可知.这四个数应该为7,8,9,10. 相乘结果应为5040

2 一次至少拿4个球,就可以保证有两个球的颜色相同.

3 甲组的数为 2n-1 ,n为1,2,3,4,5,6,7,8,9,10
乙组的数为 2t, t为1,2,3,4,5,6,7,8,9,10
则甲、乙两组各取一数相加结果为 2n-1+2t
结果只取决于n+t. 因此只要知道 n+t 有多少个不同结果,就可以知道原题意有多少个不同结果。
(1)当n=1时,t取任意数,则有10个结果;
(2)当n=2时,只有当t=10时,才得到与(1)不同的结果;
(2)当n=3时,只有当t=10时,才得到与(1)、(2)不同的结果;
...........................
(10)当n=10时,只有当t=10时,才得到与(1),(2)......,(10)不同的结果
因此共有 10+1×9=19 个不同结果

4 设x名工人生产上衣,得
4x=7×(66-x)
则x=42
所以一天可以生产 4×42=168 套服装

6 设有x次考试的成绩,现在的平均分为a.则有
(xa+100)/(x+1)=91
(xa+80)/(x+1)=86
两式相减得20/(x+1)=5
则x=3 a=88
即 现有3次考试的成绩

5 设其有x张邮票.得
x/5+N/8+39=x
化简得 4x/5-N/8=39
由题意知,N为8的陪数,又4x/5为偶数,39为奇数.则N为8的奇数陪数.设N=(2t+1)×8 得4x/5-(2t+1)=39
x=(100+5t)/2
则5t为偶数,再设t=2w,得x=(100+5×2w)/2=50+5w
由此可知,共有50+5w 张邮票, w为0,1,2,3,4,......
此时N=32w+8

7 设被乘数为a,则结果应为4a/

E. 数学趣味知识

为了80分。。。T_T我就做了

0中间加一道横线就成8了,so,拿到横线比喻成裤腰带
6跟9正好是上下颠倒的,所以6的“尾巴”在上边,9的在下边,所以6就说9的尾巴在下边了(貌似你说错了)。

PS:小朋友们,懂了吗?

F. 数学趣味小知识

抽屉原理的应用

1947年,匈牙利数学家把这一原理引进到中学生数学竞赛中,当年匈牙利全国数学竞赛有一道这样的试题:“证明在任何六个人中,一定可以找到三个互相认识的人,或者三个互不认识的人。”

这个问题乍看起来,似乎令人匪夷所思。但如果你懂得抽屉原理,要证明这个问题是十分简单的。我们用A、B、C、D、E、F代表六个人,从中随便找一个,例如A吧,把其余五个人放到“与A认识”和“与A不认识”两个“抽屉”里去,根据抽屉原理,至少有一个抽屉里有三个人。不妨假定在“与A认识”的抽屉里有三个人,他们是B、C、D。如果B、C、D三人互不认识,那么我们就找到了三个互不认识的人;如果B、C、D三人中有两个互相认识,例如B与C认识,那么,A、B、C就是三个互相认识的人。不管哪种情况,本题的结论都是成立的。

由于这个试题的形式新颖,解法巧妙,很快就在全世界广泛流传,使不少人知道了这一原理。其实,抽屉原理不仅在数学中有用,在现实生活中也到处在起作用,如招生录取、就业安排、资源分配、职称评定等等,都不难看到抽屉原理的作用。

兔同笼
你以前听说过“鸡兔同笼”问题吗?这个问题,是我国古代着名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?

你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?

解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。

这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。

普乔柯趣题
普乔柯是原苏联着名的数学家。1951年写成《小学数学教学法》一书。这本书中有下面一道有趣的题。

商店里三天共卖出1026米布。第二天卖出的是第一天的2倍;第三天卖出的是第二天的3倍。求三天各卖出多少米布?

这道题可以这样想:把第一天卖出布的米数看作1份。就可以画出下面的线段图:

第一天为1份;第二天为第一天的2倍;第三天为第二天的3倍,也就是第一天的2×3倍。

列综合算式可求出第一天卖布的米数:

1026÷(l+2+6)=1026÷9=114(米)

而 114×2=228(米)

228×3=684(米)

所以三天卖的布分别是:114米、228米、684米。

请你接这种方法做一道题。

有四人捐款救灾。乙捐款为甲的2倍,丙捐款为乙的3倍,丁捐款为丙的4倍。他们共捐款132元。求四人各捐款多少元?

鬼谷算
我国汉代有位大将,名叫韩信。他每次集合部队,只要求部下先后按l~3、1~5、1~7报数,然后再报告一下各队每次报数的余数,他就知道到了多少人。他的这种巧妙算法,人们称为鬼谷算,也叫隔墙算,或称为韩信点兵,外国人还称它为“中国剩余定理”。到了明代,数学家程大位用诗歌概括了这一算法,他写道:

三人同行七十稀,五树梅花廿一枝,

七子团圆月正半,除百零五便得知。

这首诗的意思是:用3除所得的余数乘上70,加上用5除所得余数乘以21,再加上用7除所得的余数乘上15,结果大于105就减去105的倍数,这样就知道所求的数了。

比如,一篮鸡蛋,三个三个地数余1,五个五个地数余2,七个七个地数余3,篮子里有鸡蛋一定是52个。算式是:

1×70+2×21+3×15=157

157-105=52(个)

请你根据这一算法计算下面的题目。

新华小学订了若干张《中国少年报》,如果三张三张地数,余数为1张;五张五张地数,余数为2张;七张七张地数,余数为2张。新华小学订了多少张《中国少年报》呢?

是要这些么?

G. 生活中的趣味数学知识

1.一个服装的工人每人每天可以生产4件上衣或7条裤子,一件上衣和一条裤子为一套服装。现有66名工人生产,每天最多能生产多少套服装?

2、小王有三本集邮册,全部邮票的五分之一在第一本上,N除以8(N为非零自然数)在第二本上,剩余的39张在第三本上。小王有多少张邮票?

3.小明看着自己的成绩表预测:如果下次数学考试100分,那么总平均分是91分,如果下次考80分,那么数学总平均成绩是86分,小明数学统计表是已经有几次考试?

1
设x名工人生产上衣,得
4x=7×(66-x)
则x=42
所以一天可以生产 4×42=168 套服装
2
设其有x张邮票.得
x/5+N/8+39=x
化简得 4x/5-N/8=39
由题意知,N为8的陪数,又4x/5为偶数,39为奇数.则N为8的奇数陪数.设N=(2t+1)×8 得4x/5-(2t+1)=39
x=(100+5t)/2
则5t为偶数,再设t=2w,得x=(100+5×2w)/2=50+5w
由此可知,共有50+5w 张邮票, w为0,1,2,3,4,......
此时N=32w+8
3
设有x次考试的成绩,现在的平均分为a.则有
(xa+100)/(x+1)=91
(xa+80)/(x+1)=86
两式相减得20/(x+1)=5
则x=3 a=88
即 现有3次考试的成绩

H. 数学小知识

九九歌
九九歌就是我们现在使用的乘法口诀。
远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多着作中,都有关于九九歌的记载。最初的九九歌是从"九九八十一"起到"二二如四"止,共36句。因为是从"九九八十一"开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到"一一如一"。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从"一一如一"起到"九九八十一"止。
现在我国使用的乘法口诀有两种,一种是45句的,通常称为"小九九";还有一种是81句的,通常称为"大九九"。
阿拉伯数字
在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗?
这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做"阿拉伯数字",因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。
现在,阿拉伯数字已成了全世界通用的数字符
古今中外数学名人介绍(国内部分)
刘 徽
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.
《九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果.刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作.
《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目.
刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人.
刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富.
贾 宪
贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。
他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。
秦九韶
秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成着名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。
李冶
李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学着作《益古演段》(1259)也是讲解天元术的。
朱世杰
朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名着,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法).
祖冲之
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。
祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。
祖 暅
祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中着名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。
杨辉
杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其着作甚多。
他着名的数学书共五种二十一卷。着有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。
杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。 他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。
他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学者制订的"习算纲目"是中国数学教育史上的重要文献。
赵 爽
赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。
赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式
在《日高图注》中利用几何图形面积关系,给出了"重差术"的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。
华罗庚
华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。
1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。 1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。 历任清华大学教授,中国科学院数学研究所、应用数学研究所所长、名誉所长,中国数学学会理事长、名誉理事长,全国数学竞赛委员会主任,美国国家科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士,中国科学院物理学数学化学部副主 任、副院长、主席团成员,中国科学技术大学数学系主任、副校长,中国科协副主席,国务院学位委员会委员等职。曾任一至六届全国人大常务委员,六届全国政协副主席。 曾被授予法国南锡大学、香港中文大学和美国伊利诺斯大学荣誉博士学位。主要从事解 析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积 分等领域的研究与教授工作并取得突出成就。40年代,解决了高斯完整三角和的估计这 一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈 代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至 今仍是最佳纪录。 代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出 了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉 当-布饶尔-华定理。其专着《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍 德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居 世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论着作之 一。其专着《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在 调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等 奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部着作 并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为 “华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多 篇,并有专着和科普性着作数十种。
陈景润
数学家,中国科学院院士。1933 年5月22日生于福建福州。1953年毕业于厦门大学 数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数 学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国 际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。这项工作,使之与王 元教授、潘承洞教授共同获得1978年国家自然科学奖一等奖。其后对上述定理又作了改 进,并于1979年初完成论文《算术级数中的最小素数》,将最小素数从原有的80推进到 16 ,受到国际数学界好评。对组合数学与现代经济管理、科学实验、尖端技术、人类 生活密切关系等问题也作了研究。发表研究论文70余篇,并有《数学趣味谈》、《组合 数学》等着作。

I. 五年级数学趣味小知识

一天,一位百万富翁正悠闲地散步,一个穿戴十分平常的陌生人与他搭话。那人好像知道百万富翁爱钱似的,话没说几句,就谈到了一个换钱的契约。陌生人说:“从今天开始,我每天给你十万元,你今天给我一元钱,明天给我两元,即你每天给我的钱只需是前一天的二倍。”百万富翁简直不敢相信自己的耳朵,反复确认不是在做梦之后,急忙与陌生人签订了契约,且一再强调不准反悔。日子一天天过去,富翁每天都按时收到十万元,而仅以微小的数目付出。到了第十天,富翁已收到一百万元,总共却只付出去1023元!到了第二十天,富翁感觉情况不妙,他发觉自己的支出在激增! 半年后,百万富翁变成了千万富翁!又过了一月后,他变成了百万富翁!一星期后,变成了十万富翁!一天后,他变成了穷光蛋!因为他每天一百万,两百万,四百万……最后每天一千亿,两千亿的交……
这个人最后被杀死了!12345张扑克牌,每相临的两张可以互换位置,问怎么才能在三次互换中变成54321的顺序!
答案:
1 2 3 4 5 -- 1 2 和 3 4 互换
3 4 1 2 5 -- 4 1 和 2 5 互换
3 2 5 4 1 -- 3 2 和 5 4 互换
5 4 3 2 1

J. 数学趣味小知识 简短的 20到50字左右

1.01的365次方=37.78343433289 >>>1;
1的365次方=1;
0.99的365次方= 0.02551796445229 <<<1;
1.01=1+0.01,也就是每天进步一点,1.01的365次方也就是说每天进步一点,一年以后,你将进步很大,远远大于“1”;
1是指原地踏步,一年以后你还是原地踏步,还是那个“1”;
0.99=1-0.01,也就是说你每天退步一点点,你将在一年以后,远远小于“1”,远远被人抛在后面,将会是“1”事无成。