⑴ 初三数学知识点
初三数学知识点
第一章 二次根式
1 二次根式:形如 ( )的式子为二次根式;
性质: ( )是一个非负数;
;
。
2 二次根式的乘除: ;
。
3 二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并。
4 海伦-秦九韶公式: ,S是三角形的面积,p为 。
第二章 一元二次方程
1 一元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方程。
2 一元二次方程的解法
配方法:将方程的一边配成完全平方式,然后两边开方;
公式法:
因式分解法:左边是两个因式的乘积,右边为零。
3 一元二次方程在实际问题中的应用
4 韦达定理:设 是方程 的两个根,那么有
第三章 旋转
1 图形的旋转
旋转:一个图形绕某一点转动一个角度的图形变换
性质:对应点到旋转中心的距离相等;
对应点与旋转中心所连的线段的夹角等于旋转角
旋转前后的图形全等。
2 中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;
中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;
3 关于原点对称的点的坐标
第四章 圆
1 圆、圆心、半径、直径、圆弧、弦、半圆的定义
2 垂直于弦的直径
圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;
垂直于弦的直径平分弦,并且平方弦所对的两条弧;
平分弦的直径垂直弦,并且平分弦所对的两条弧。
3 弧、弦、圆心角
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
4 圆周角
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;
半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。
5 点和圆的位置关系
点在圆外
点在圆上 d=r
点在圆内 d<r
定理:不在同一条直线上的三个点确定一个圆。
三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心。
6直线和圆的位置关系
相交 d<r
相切 d=r
相离 d>r
切线的性质定理:圆的切线垂直于过切点的半径;
切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线;
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。
7 圆和圆的位置关系
外离 d>R+r
外切 d=R+r
相交 R-r<d<R+r
内切 d=R-r
内含 d<R-r
8 正多边形和圆
正多边形的中心:外接圆的圆心
正多边形的半径:外接圆的半径
正多边形的中心角:没边所对的圆心角
正多边形的边心距:中心到一边的距离
9 弧长和扇形面积
弧长
扇形面积:
10 圆锥的侧面积和全面积
侧面积:
全面积
11 (附加)相交弦定理、切割线定理
第五章 概率初步
1 概率意义:在大量重复试验中,事件A发生的频率 稳定在某个常数p附近,则常数p叫做事件A的概率。
2 用列举法求概率
一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p(A)=
3 用频率去估计概率
下册
第六章 二次函数
1 二次函数 =
a>0,开口向上;a<0,开口向下;
对称轴: ;
顶点坐标: ;
图像的平移可以参照顶点的平移。
2 用函数观点看一元二次方程
3 二次函数与实际问题
第七章 相似
1 图形的相似
相似多边形的对应边的比值相等,对应角相等;
两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;
相似比:相似多边形对应边的比值。
2 相似三角形
判定:
平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;
如果两个三角形的三组对应边的比相等,那么这两个三角形相似;
如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。
3 相似三角形的周长和面积
相似三角形(多边形)的周长的比等于相似比;
相似三角形(多边形)的面积的比等于相似比的平方。
4 位似
位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。
第八章 锐角三角函数
1 锐角三角函数:正弦、余弦、正切;
2 解直角三角形
第九章 投影和视图
1 投影:平行投影、中心投影、正投影
2 三视图:俯视图、主视图、左视图。
3 三视图的画法
⑵ 初三数学二次函数知识点总汇
一、内容综述:
四种常见函数的图象和性质总结 图象
特殊点
性质
一
次
函
数
与x轴交点
与y轴交点(0,b)
(1)当k>0时,y随x的增大而增大;
(2)当k<0时,y随x的增大而减小.
正
比
例
函
数
与x、y轴交点是原点(0,0)。
(1)当k>0时,y随x的增大而增大,且直线经过第一、三象限;
(2)当k<0时,y随x的增大而减小,且直线经过第二、四象限
反
比
例
函
数
与坐标轴没有交点,但与坐标轴无限靠近。
(1)当k>0时,双曲线经过第一、三象限,在每个象限内,y随x的增大而减小;
(2) 当k<0时,双曲线经过第二、四象限,在每个象限内,y随x的增大而增大。
二
次
函
数
与x轴交点或,其中是方程的解,与y轴交点,顶点坐标是 (-,)。
(1)当a>0时,抛物线开口向上,并向上无限延伸;对称轴是直线x=-, y最小值=。
(2)当 a<0时,抛物线开口向下,并向下无限延伸;对称轴是直线x=-, y最大值=
注意事项总结:
1.关于点的坐标的求法:
方法有两种,一种是直接利用定义,结合几何直观图形,先求出有关垂线段的长,再根据该点的位置,明确其纵、横坐标的符号,并注意线段与坐标的转化,线段转换为坐标看象限加符号,坐标转换为线段加绝对值;另一种是根据该点纵、横坐标满足的条件确定,例如直线y=2x和y=-x-3的交点坐标,只需解方程组就可以了。
2.对解析式中常数的认识:
一次函数y=kx+b (k≠0)、二次函数y=ax2+bx+c(a≠0)及其它形式、反比例函数y=(k≠0),不同常数对图像位置的影响各不相同,它们所起的作用,一般是按其正、零、负三种情况来考虑的,一定要建立起图像位置和常数的对应关系。
3.对于二次函数解析式,除了掌握一般式即:y=ax2+bx+c((a≠0)之外,还应掌握“顶点式”y=a(x-h)2+k及“两根式”y=a(x-x1)(x-x2),(其中x1,x2即为图象与x轴两个交点的横坐标)。当已知图象过任意三点时,可设“一般式”求解;当已知顶点坐标,又过另一点,可设“顶点式”求解;已知抛物线与x轴交点坐标时,可设“两根式”求解。总之,在确定二次函数解析式时,要认真审题,分析条件,恰当选择方法,以便运算简便。
4.二次函数y=ax2与y=a(x-h)2+k的关系:图象开口方向相同,大小、形状相同,只是位置不同。y=a(x-h)2+k图象可通过y=ax2平行移动得到。当h>0时,向右平行移动|h|个单位;h<0向左平行移动|h|个单位;k>0向上移动|k|个单位;k<0向下移动|k|个单位;也可以看顶点的坐标的移动, 顶点从(0,0)移到(h,k),由此容易确定平移的方向和单位。
二、例题分析:
例1.已知P(m, n)是一次函数y=-x+1图象上的一点,二次函数y=x2+mx+n的图象与x轴两个交点的横坐标的平方和为1,问点N(m+1, n-1)是否在函数y=-图象上。
分析:P(m, n)是图象上一点,说明P(m, n)适合关系式y=-x+1,代入则可得到关于m,n的一个关系,二次函数y=x2+mx+n与x轴两个交点的横坐标是方程x2+mx+n=0的两个根,则x1+x2=-m, x1x2=n, 由平方和为1即x12+x22=(x1+x2)2-2x1x2=1,又可得到关于m, n的一个关系,两个关系联立成方程组,可解出m, n,这种利用构造方程求函数系数的思想最为常见。
解:∵P(m,n)在一次函数y=-x+1的图象上,
∴ n=-m+1, ∴ m+n=1.
设二次函数y=x2+mx+n的图象与x轴的两个交点的横坐标为x1,x2,
∴x12+x22=1,
又∵x1+x2=-m, x1x2=n,
∴ (x1+x2)2-2x1x2=1, 即m2-2n=1
由解这个方程组得:或。
把m=-3, n=4代入x2+mx+n=0,
x2-3x+4=0, Δ<0.
∴ m=-3, n=4(舍去).
把m=1, n=0代入x2+mx+n=0,
x2+x=0, Δ>0
∴点N(2,-1),
把点N代入y=-,当x=2时,y=-3≠-1.
∴点N(2,-1)不在图象y=-上。
说明:这是一道综合题,包括二次函数与一次函数和反比例函数,而且需要用到代数式的恒等变形,与一元二次方程的根与系数关系结合,求出m、n值后,需检验判别式,看是否与x轴有两个交点。当m=-3, n=4时,Δ<0,所以二次函数与x轴无交点,与已知不符,应在解题过程中舍去。是否在y=-图象上,还需把点(2,-1)代入y=-,满足此函数解析式,点在图象上,否则点不在图象上。
例2.直线 y=-x与双曲线y=-的两个交点都在抛物线y=ax2+bx+c上,若抛物线顶点到y轴的距离为2,求此抛物线的解析式。
分析:两函数图象交点的求法就是将两函数的解析式联立成方程组,方程组的解既为交点坐标。
解:∵直线y=-x与双曲线y=-的交点都在抛物线y=ax2+bx+c上,
由解这个方程组,得x=±1.
∴当x=1时,y=-1.
当x=-1时,y=1.
经检验:,都是原方程的解。
设两交点为A、B,∴A(1,-1),B(-1,1)。
又∵抛物线顶点到y轴的距离为2,∴ 抛物线的对称轴为直线x=2或x=-2,
当对称轴为直线x=2时,
设所求的抛物线解析式为y=a(x-2)2+k,又∵过A(1,-1),B(-1,1),
∴解方程组得
∴ 抛物线的解析式为y=(x-2)2-
即 y=x2-x-.
当对称轴为直线x=-2时,设所求抛物线解析式为y=a(x+2)2+k,
则有解方程组得,
∴ 抛物线解析式为y=-(x+2)2+
y=-x2-x+.
∴所求抛物线解析式为:y=x2-x-或y=-x2-x+。
说明:在求直线和双曲线的交点时,需列出方程组,通过解方程组求出x, y值,双曲线的解析式为分式方程,所以所求x, y值需检验。抛物线顶点到y轴距离为2,所以对称轴可在y轴左侧或右侧,所以要分类讨论,求出抛物线的两个解析式。
例3、已知∠MAN=30°,在AM上有一动点B,作BC⊥AN于C,设BC的长度为x,△ABC的面积为y,试求y与x之间的函数关系式。
分析:求两个变量y与x之间的函数关系式,就是想办法用x表示y,,BC=x,则想办法先用含x的代数式表示AC。
解:如图
在Rt△ABC中,
∵∠A=30°,∠BCA=90° BC=x,
∴AC=BC=x
∴
说明:在含有30°、45°、60°的直角三角形中,应注意利用边之间的特殊倍数关系(如AC=BC)。
例4、如图,锐角三角形ABC的边长BC=6,面积为12,P在AB上,Q在AC上,且PQ∥BC,正方形PQRS的边长为x,正方形PQRS与△ABC的公共部分的面积为y。
(1)当SR恰落在BC上时,求x,
(2)当SR在△ABC外部时,求y与x间的函数关系式;
(3)求y的最大值。
略解:(1)由已知,△ABC的高AD=4。
∵△APQ∽△ABC,(如图一)
设AD与PQ交于点E∴
∴
∴
(2)当SR在△ABC的外部时, 同样有,
则,即AE=
∴y=ED·PQ=x(4-)=-2+4x()
(3)∵a=-<0,y=-其中,
∴当x=3时,y取得最大值6.
说明:此例将线段PQ的长设为x,正方形PQRS与△ABC的公共部分的面积设为y,寻找它们之间的函数关系.注意自变量的取值范围;在y取最大值时,要注意顶点(3,6)的横坐标是否在取值范围内.
例5.( 潍坊市中考题)某公园草坪的护栏是由50段形状相同的抛物线组成的,为牢固起见,每段护栏需按间距0.4m加设不锈钢管(如图一)作成的立柱。为了计算所需不锈钢管立柱的总长度,设计人员利用图二所示的坐标系进行计算。
(1)求该抛物线的解析式; (2)计算所需不锈钢管立柱的总长度。
分析:图中给出了一些数量,并已经过护栏中心建立了平面直角坐标系, 所以求二次函数的解析式关键是找到一些条件建立方程组。因为对称轴是 y轴,所以b=0,可以设二次函数为y=ax2+c.
解:(1)在如图所示坐标中,设函数解析式为y=ax2+c,B点坐标为(0,0.5),C点坐标为(1,0)。
分别代入y=ax2+c得:
,解得
抛物线的解析式为:y=-0.5x2+0.5
(2)分别过AC的五等分点,C1,C2,C3,C4,作x轴的垂线,交抛物线于B1,B2,B3,B4,则C1B1,C2B2,C3B3,C4B4的长就是一段护栏内的四条立柱的长,点C3,C4的坐标为(0.2,0)、(0.6,0),则B3,B4点的横坐标分别为x3=0.2,x4=0.6.
将x3=0.2和x4=0.6分别代入
y=-0.5x2+0.5得y3=0.48,y4=0.32
由对称性得知,B1,B2点的纵坐标:y1=0.32,y2=0.48
四条立柱的长为:C1B1=C4B4=0.32(m)
C2B2=C3B3=0.48(m)
所需不锈钢立柱的总长为
(0.32+0.48)×2×50=80(m)。
答:所需不锈钢立柱的总长为80m。
⑶ 初三数学知识点有哪些
重点部分:二次方程的维达定理,二次函数图像解析式。圆部分。相似形,统计概率部分。
⑷ 初三数学知识点归纳
初三数学重要知识点归纳
(1)圆的对称性
1、圆的轴对称性
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性
圆是以圆心为对称中心的中心对称图形。
(2)基本函数的概念及性质
1、函数y=-8x是一次函数。
2、函数y=4x+1是正比例函数。
3、函数是反比例函数。
4、抛物线y=-3(x-2)2-5的开口向下。
5、抛物线y=4(x-3)2-10的对称轴是x=3。
6、抛物线的顶点坐标是(1,2)。
7、反比例函数的图象在第一、三象限。
(3)一元二次方程常见考法
1、考查一元二次方程的根与系数的关系(韦达定理):这类题目有着解题规律性强的特点,题目设置会很灵活,所以一直很吸引命题者。主要考查
①根与系数的推导,有关规律的探究。
②已知两根或一根构造一元二次方程,这类题目一般比较开放。
2、在一元二次方程和几何问题、函数问题的交汇处出题。(几何问题:主要是将数字及数字间的关系隐藏在图形中,用图形表示出来,这样的图形主要有三角形、四边形、圆等涉及到三角形三边关系、三角形全等、面积计算、体积计算、勾股定理等);
3、列一元二次方程解决实际问题,以实际生活为背景,命题广泛。(常见的题型是增长率问题,注:平均增长率公式。
(4)数据的平均数中位数与众数
1、数据13,10,12,8,7的平均数是10。
2、数据3,4,2,4,4的众数是4。
3、数据1,2,3,4,5的中位数是3。
(5)特殊三角函数值
1、cos30°=根号3/2。
2、sin260°+cos260°=1。
3、2sin30°+tan45°=2。
4、tan45°=1。
5、cos60°+sin30°=1。
(4)数学初三下册知识点扩展阅读
初三数学学习方法总结
课前认真预习。预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十。带着预习中不明白的问题去听老师讲课,来解答这类的问题。预习还可以使听课的整体效率提高。具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟。在时间允许的情况下,还可以将练习册做完。
让数学课学与练结合。在数学课上,光听是没用的。当老师让同学去黑板上演算时,自己也要在草稿纸上练。如果遇到不懂的难题,一定要提出来,不能不求甚解,否则考试遇到类似的题目就可能不会做。听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”。
课后及时复习。写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题。可以根据自己的需要选择适合自己的课外书。其课外题内容大概就是今天上的课。
⑸ 跪求初三下册数学三角函数知识点框架图!要全面一点的.
1、三角函数的定义:Rt△中,sinA=角A对边/斜边;cosA=角A邻边/斜边;tanA=角A对边/角A邻边2、互余两角的三角函数间的关系sinA=cos(90-A);cosA=sin(90-A)
tanA=1/tan(90-A)3、同角三角函数的关系sinA平方+cosA平方=1
tanA=sinA/cosA4、三个特殊角的三角函数值sin30=1/2
sin45=根2/2
sin60=根3/2cos30=根3/2
cos45=根2/2
cos60=1/2tan30=根3/3
tan45=1
tan60=根35、解直角三角形已知两边解直角三角形已知一边、一角解直角三角形6、解直角三角形的应用(1)在实际问题中寻找直角三角形(2)几个常见图形(3)坡度和坡脚问题坡度i=1:m(表示垂直上升的高度与水平前进距离之比)坡角指坡面与水平地面的夹角(一般坡脚的正切=坡度)
⑹ 初一到初三数学知识点有哪些
初一到初三数学知识点:
1、过两点有且只有一条直线。
2、两点之间线段最短。
3、同角或等角的补角相等。
4、同角或等角的余角相等。
5、过一点有且只有一条直线和已知直线垂直。
6、直线外一点与直线上各点连接的所有线段中,垂线段最短。
7、平行公理经过直线外一点,有且只有一条直线与这条直线平行。
8、如果两条直线都和第三条直线平行,这两条直线也互相平行。
9、同位角相等,两直线平行。
10、内错角相等,两直线平行。
11、同旁内角互补,两直线平行。
12、两直线平行,同位角相等。
13、两直线平行,内错角相等。
14、两直线平行,同旁内角互补。
15、定理三角形两边的和大于第三边。
16、推论三角形两边的差小于第三边。
17、三角形内角和定理三角形三个内角的和等于180°。
18、推论1直角三角形的两个锐角互余。
19、推论2三角形的一个外角等于和它不相邻的两个内角的和。
20、推论3三角形的一个外角大于任何一个和它不相邻的内角。
21、全等三角形的对应边、对应角相等。
22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。
23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。
24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。
25、边边边公理(SSS)有三边对应相等的两个三角形全等。
26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。
27、定理1在角的平分线上的点到这个角的两边的距离相等。
28、定理2到一个角的两边的距离相同的点,在这个角的平分线上。
29、角的平分线是到角的两边距离相等的所有点的集合。
30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)。
31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边。
32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。
33、推论3等边三角形的各角都相等,并且每一个角都等于60°。
34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
35、推论1三个角都相等的三角形是等边三角形。
36、推论2有一个角等于60°的等腰三角形是等边三角形。
37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。
38、直角三角形斜边上的中线等于斜边上的一半。
39、定理线段垂直平分线上的点和这条线段两个端点的距离相等。
40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。
42、定理1关于某条直线对称的两个图形是全等形。
43、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
⑺ 初三数学下册二次函数知识点
说说你要哪一类的。
⑻ 初三数学知识点有哪些
初三数学知识点有:
一、锐角三角形函数
1、正弦:把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA=a/c;
2、余弦:把锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA=b/c;
3、正切:把锐角A的对边与邻边的比叫做∠A的正切,记作tanA=a/b;
4、余切:把锐角A的邻边与对边的比叫做∠A的余切,记作cotA=b/a。
二、相似三角形
两个对应角相等,对应边成比例的三角形叫做相似三角形。两个三角形相似时和证两个三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样便于找出相似三角形的对应角和对应边。
三、圆和圆的位置关系
若连心线长为d,两圆的半径分别为R,r,则:
1、两圆外离<=>d>R+r;
2、两圆外切<=>d=R+r;
3、两圆相交<=>R-r<d<R+r(R>r)。
四、二次函数的概念
一般地,如果y=ax+bx+c(a,bc是常数,a≠0),那么y叫做x的二次函数。y=ax+bx+c(a,bc是常数,a≠0)叫做二次函数的一般式。
五、中心对称的性质
1、关于中心对称的两个图形是全等形。
2、关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
3、关于中心对称的两个图形,对应线段平行且相等。
⑼ 初三数学学什么知识点
初三数学知识点
第一章\x09二次根式
1 二次根式:形如 ( )的式子为二次根式;
性质:( )是一个非负数;
;
.
2 二次根式的乘除:;
.
3 二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并.
4 海伦-秦九韶公式:,S是三角形的面积,p为 .
第二章 一元二次方程
1 一元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方程.
2 一元二次方程的解法
配方法:将方程的一边配成完全平方式,然后两边开方;
公式法:
因式分解法:左边是两个因式的乘积,右边为零.
3 一元二次方程在实际问题中的应用
4 韦达定理:设 是方程 的两个根,那么有
第三章 旋转
1 图形的旋转
旋转:一个图形绕某一点转动一个角度的图形变换
性质:对应点到旋转中心的距离相等;
对应点与旋转中心所连的线段的夹角等于旋转角
旋转前后的图形全等.
2 中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;
中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;
3 关于原点对称的点的坐标
第四章 圆
1 圆、圆心、半径、直径、圆弧、弦、半圆的定义
2 垂直于弦的直径
圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;
垂直于弦的直径平分弦,并且平方弦所对的两条弧;
平分弦的直径垂直弦,并且平分弦所对的两条弧.
3 弧、弦、圆心角
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
4 圆周角
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;
半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径.
5 点和圆的位置关系
点在圆外
点在圆上 d=r
点在圆内 dR+r
外切 d=R+r
相交 R-r
⑽ 初三的数学知识点
一、相似三角形(7个考点)
考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小
考核要求:
(1)理解相似形的概念;
(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点3:相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点4:相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点5:三角形的重心
考核要求:知道重心的定义并初步应用。
二、锐角函数值(2个考点)
考点7:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考点8:解直角三角形及其应用
考核要求:
(1)理解解直角三角形的意义;
(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
三、二次函数(4个考点)
考点9:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数
考核要求:
(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;
(2)知道常值函数;
(3)知道函数的表示方法,知道符号的意义。
考点10:用待定系数法求二次函数的解析式
考核要求:
(1)掌握求函数解析式的方法;
(2)在求函数解析式中熟练运用待定系数法。
注意求函数解析式的步骤:一设、二代、三列、四还原。
考点11:画二次函数的图像
考核要求:
(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像
(2)理解二次函数的图像,体会数形结合思想;
(3)会画二次函数的大致图像。
考点12:二次函数的图像及其基本性质
考核要求:
(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;
(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。
注意:
(1)解题时要