当前位置:首页 » 基础知识 » 七年级数学重点知识
扩展阅读
15款经典轩怎么样 2025-01-11 02:51:06
观看消防讲座知识 2025-01-11 02:35:06

七年级数学重点知识

发布时间: 2022-03-08 21:33:35

‘壹’ 初一上学期数学知识点归纳

初中数学宝典,你知道学习数学最重要的是什么吗?

在初中学习数学这们课程的时候很多的学生都是比较烦恼的,因为这们课程是非常难的,并且难点非常多,很多的学生在刚开始学习的时候还可以更得上,但是过一段时间之后就会变得非常的吃力,那么你知道初中数学宝典是什么吗?我们来了解一下吧!

复习知识点

以上就是初中数学宝典的内容,当学习吃力的时候可以先复习一下之前的内容,当然这个时候之前记得笔记就可以用来复习了,这样可以更好的帮助我们学习后期的内容,并且可以改善学习吃力的问题.

‘贰’ 初一数学的重点

初中数学知识点总结
一、基本知识
一、数与代数A、数与式:
1、有理数
有理数:①整数→正整数/0/负整数
②分数→正分数/负分数
数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:
加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数
无理数:无限不循环小数叫无理数
平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。
3、代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式
整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一样。
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式
整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。
B、方程与不等式
1、方程与方程组
一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解
A、图形的认识
1、点,线,面
点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。
2、角
线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。
比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。
垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等;
判定定理:到线段2端点距离相等的点在这线段的垂直平分线上
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
正方形:一组邻边相等的矩形是正方形
性质:正方形具有平行四边形、菱形、矩形的一切性质
判定:1、对角线相等的菱形2、邻边相等的矩形
二、基本定理
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
14、两直线平行,同旁内角互补
15、定理 三角形两边的和大于第三边
16、推论 三角形两边的差小于第三边
17、三角形内角和定理 三角形三个内角的和等于180°
18、推论1 直角三角形的两个锐角互余
19、推论2 三角形的一个外角等于和它不相邻的两个内角的和
20、推论3 三角形的一个外角大于任何一个和它不相邻的内角
21、全等三角形的对应边、对应角相等
22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23、角边角公理( ASA)有两角和它们的夹边对应相等的 两个三角形全等
24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25、边边边公理(SSS) 有三边对应相等的两个三角形全等
26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27、定理1 在角的平分线上的点到这个角的两边的距离相等
28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29、角的平分线是到角的两边距离相等的所有点的集合
30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33、推论3 等边三角形的各角都相等,并且每一个角都等于60°
34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35、推论1 三个角都相等的三角形是等边三角形
36、推论 2 有一个角等于60°的等腰三角形是等边三角形
37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38、直角三角形斜边上的中线等于斜边上的一半
39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42、定理1 关于某条直线对称的两个图形是全等形
43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形
48、定理 四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理 n边形的内角的和等于(n-2)×180°
51、推论 任意多边的外角和等于360°
52、平行四边形性质定理1 平行四边形的对角相等
53、平行四边形性质定理2 平行四边形的对边相等
54、推论 夹在两条平行线间的平行线段相等
55、平行四边形性质定理3 平行四边形的对角线互相平分
56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形
58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60、矩形性质定理1 矩形的四个角都是直角
61、矩形性质定理2 矩形的对角线相等
62、矩形判定定理1 有三个角是直角的四边形是矩形
63、矩形判定定理2 对角线相等的平行四边形是矩形
64、菱形性质定理1 菱形的四条边都相等
65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66、菱形面积=对角线乘积的一半,即S=(a×b)÷2
67、菱形判定定理1 四边都相等的四边形是菱形
68、菱形判定定理2 对角线互相垂直的平行四边形是菱形
69、正方形性质定理1 正方形的四个角都是直角,四条边都相等
70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71、定理1 关于中心对称的两个图形是全等的
72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75、等腰梯形的两条对角线相等
76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形
77、对角线相等的梯形是等腰梯形
78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d
84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
87、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例
90、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94、判定定理3 三边对应成比例,两三角形相似(SSS)
95、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97、性质定理2 相似三角形周长的比等于相似比
98、性质定理3 相似三角形面积的比等于相似比的平方
99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
101、圆是定点的距离等于定长的点的集合
102、圆的内部可以看作是圆心的距离小于半径的点的集合
103、圆的外部可以看作是圆心的距离大于半径的点的集合
104、同圆或等圆的半径相等
105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107、到已知角的两边距离相等的点的轨迹,是这个角的平分线
108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109、定理 不在同一直线上的三点确定一个圆。
110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111、推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112、推论2 圆的两条平行弦所夹的弧相等
113、圆是以圆心为对称中心的中心对称图形
114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116、定理 一条弧所对的圆周角等于它所对的圆心角的一半
117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121、①直线L和⊙O相交 d﹤r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d﹥r
122、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123、切线的性质定理 圆的切线垂直于经过切点的半径
124、推论1 经过圆心且垂直于切线的直线必经过切点
125、推论2 经过切点且垂直于切线的直线必经过圆心
126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角
127、圆的外切四边形的两组对边的和相等
128、弦切角定理 弦切角等于它所夹的弧对的圆周角
129、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
131、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
133、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等
134、如果两个圆相切,那么切点一定在连心线上

135、①两圆外离 d﹥R+r ②两圆外切 d=R+r③两圆相交 R-r﹤d﹤R+r(R﹥r)
④两圆内切 d=R-r(R﹥r) ⑤两圆内含 d﹤R-r(R﹥r)
136、定理 相交两圆的连心线垂直平分两圆的公共弦
137、定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139、正n边形的每个内角都等于(n-2)×180°/n
140、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142、正三角形面积√3a/4 a表示边长
143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144、弧长计算公式:L=n兀R/180
145、扇形面积公式:S扇形=n兀R^2/360=LR/2
146、内公切线长= d-(R-r) 外公切线长= d-(R+r)

一、常用数学公式
公式分类 公式表达式
乘法与因式分解 a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a
-b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a
X1*X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R
注:其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB
注:角B是边a和边c的夹角

‘叁’ 七年级数学重点知识

费了我好大的事啊这位仁兄 七年级数学知识点
第一章 走进数学世界
第二章 有理数
1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.
5.科学记数法: ,其中 。 6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
第三章 整式的加减
一、整式的有关概念
1、单项式:数与字母乘积,这样的代数式叫单项式。单独的一个数或字母也是单项式。
2、单项式的系数:单项式中的数字因数。
3、单项式的次数:单项式中所有的字母的指数和。
4、多项式:几个单项式的和叫多项式。
5、多项式的项及次数:组成多项式中的单项式叫多项式的项,多项式中次数最高项的次数叫多项式的次数。特别注意,多项式的次数不是组成多项式的所有字母指数和!!!
6、整式:单项式与多项式统称整式。(分母含有字母的代数式不是整式)
二、整式的运算
(一)整式的加减法 基本步骤:去括号,合并同类项。
(二)整式的乘法
1、同底数的幂相乘 法则:同底数的幂相乘,底数不变,指数相加。 数学符号表示:___ (其中m、n为正整数)
2、幂的乘方 法则:幂的乘方,底数不变,指数相乘。 数学符号表示:_______ (其中m、n为正整数)
3、积的乘方 法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。(即等于积中各因式乘方的积。数学符号表示:_______ (其中n为正整数)
4、同底数的幂相除 法则:同底数的幂相除,底数不变,指数相减。 数学符号表示:___ (其中m、n为正整数)
5、单项式乘以单项式 法则:单项式乘以单项式,把它们的系数、相同字母的幂分别相乘,其余的字母则连同它的指数不变,作为积的一个因式。
6、单项式乘以多项式 法则:单项式乘以多项式,就是根据分配律用单项式的去乘多项式的每一项,再把所得的积相加。
7、多项式乘以多项式 法则:多项式乘以多项式,先用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加。
8、平方差公式 法则: 两数的各乘以这两数的差,等于这两数的平方差。 数学符号表示:_____ (其中a、b既可以是数,也可以是代数式) 说明:平方差公式是根据多项式乘以多项式得到的,它是两个数的和与同样的两个数的差的积的形式。
9、完全平方公式 法则:两数和(或差)的平方,等于这两数的平方和再加上(或减去)这两数积的2倍。
数学符号表示: ______
(二)整式的除法
1、单项式除以单项式 法则:单项式除以单项式,把它们的系数、相同字母的幂分别相除后,作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
2、多项式除以单项式 法则:多项式除以单项式,就是多项式的每一项去除以单项式,再把所得的商相加。
第四章 图形初步认识
1.点、线、面:通过丰富的实例,进一步认识点、线、面(如交通图上用点表示城市,屏幕上的画面是由点组成的)。2.角 ①通过丰富的实例,进一步认识角。②会比较角的大小,能估计一个角的大小,会计算角度的和与差,识别度分、秒,会进行简单换算。 ③了解角平分线及其性质。
相交线和平行线
一、基本概念
1. 直线:(1)直线是向__________无限延伸的,直线没有端点。(2)经过两点有且只有一条__________。
2.射线:直线上一点和它一旁的部分叫做__________,这个点叫做射线的端点,射线只有一个端点。
2. 线段:(1)直线上两点之间的部分叫做__________,__________有两个端点.(2)两点之间,__________最短。
(3)把一条线段分成两条相等线段的点,叫做线段的__________。
4.垂线;当两条直线相交所构成的四个角中有一个角是__________时,叫做两条直线互相垂直;其中一条直线叫做另一条直线的垂线,它们的交点叫做__________。
5、垂线的性质:(1)经过一点,有且只有___条直线和已知直线垂直;(2)直线外一点与直线上各点连结的所有线段中,__最短。
6.两点间的距离:连结__________的线段的长度。
7.点到直线的距离:从直线外一点到__________的垂线段的长度。
8.两条平行线间的距离:两条平行线中一条直线上__________到另一条直线的距离。
9、角:有公共端,点的两条__________组成的图形叫做角。这个公共端点叫做角的顶点,这两条_____叫做角的边。
10、角平分线:从一个角的顶点出发,把这个角分成两个__________的角的射线,叫做角平分线。
11.平角、周角:射线绕端点旋转,当终止位置和起始位置成__________时,所成的角叫做平角;继续旋转回到__________位置时,所成的角叫做周角。
12、角的度量:1周角=__平角=___直角=360°, 1°=___’ , 1’=___”
13.小于平角的角的分类:__________角、__________角、__________角。
14.互为余角、补角:如果两个角的和是_,这两个角叫做互为余角;如果两个角的和是_,这两个角叫做互为补角。
15.相关角的性质:(1)对顶角______(2)同角或等角的余角_____;(3)同角或等角的补角_______。
二、相交线和平行线
1.平行线:在同一平面内,__________的两条直线叫做平行线。
2.在同一平面内,两条直线的位置关系只有两种:__________。相交时,对顶角相等。
3.平行线的判定:(1)同位角___,两直线平行。(2)内错角相等,两直线_____。
(3)同旁内角__________,两直线平行。(4)平行(或垂直)于同一直线的两直线__________。
4、平行线的性质:(1)经过直线外一点,有且只有____条直线与这条直线平行。
(2)两直线平行,同位角_______。(3)两直线平行,内错角__________。
(4)两直线平行,同旁内角_.(5)一条直线和两条平行线中的一条垂直(或平行),这条直线也和_垂直(或平行).
(6)平行线间的距离处处__________。(7)经过三角形一边的中点与另一边平行的直线必平分__________。
三、平行线分线段成比例
1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也____。
2、平行线等分线段定理的推论:(1)经过梯形一腰的中点与底_____的直线,必平分另一腰。(2)经过三角形一边的中点与另一边平行的直线必平分__________。
3.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成_________。
4.平行线分线段成比例定理的推论:__于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。5.定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段比例,那么这条直线_于三角形的第三边。
第五章 数据的收集与表达
�8�5 学习如何去收集数据、整理数据、分析数据并最后得到相应的结论;另外,我们还必须掌握有关频数、频率等知识点。
明确调查问题————数据的用途;
确定调查对象————数据收集的范围;
选择调查方法————收集数据所采用的方法;
展开调查——————数据收集;
记录结果——————数据整理;
得出结论——————数据分析;
�8�5 概括:频数表示每个对象出现的次数;
频率表示每个对象出现的次数与总次数的比值(或者百分比)
频数和频率都能够反映每个对象出现的频繁程度。
�8�5 学会用统计来直观来表示数据,并从统计图中发现数据间的联系。学会用计算机画出统计图。
第六章 一元一次方程
1.会对方程进行适当的变形解一元一次方程:解方程的基本思想就是转化,即对方程进行变形,变形时要注意两点,一时方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程的解可能不同;二是去分母时,不要漏乘没有分母的项,一元一次方程是学习二元一次方程组、一元二次方程、一元一次不等式及函数问题的基本内容。
2.正确理解方程解的定义,并能应用等式性质巧解考题:方程的解应理解为,把它代入原方程是适合的,其方法就是把方程的解代入原方程,使问题得到了转化。
3.理解方程ax=b在不同条件下解的各种情况,并能进行简单应用:(1)a≠0时,方程有唯一解x= ;
(2)a=0,b=0时,方程有无数个解; (3)a=0,b≠0时,方程无解。
4.正确列一元一次方程解应用题:列方程解应用题,关键是寻找题中的等量关系,可采用图示、列表等方法,根据近几年的考试题目分析,要多关注社会热点,密切联系实际,多收集和处理信息,解应用题时还要注意检查结果是否符合实际意义。
5.几种常见的问题:和差倍分问题、等机变形问题、劳力调配问题、比例分配问题、数字问题、工程问题。
第七章 二元一次方程组
1.二元一次方程(组)及解的应用:注意:方程(组)的解适合于方程,任何一个二元一次方程都有无数个解,有时考查其整数解的情况,还经常应用方程组的概念巧求代数式的值。
2.解二元一次方程组:解方程组的基本思想是消元,常用方法是代入消元和加减消元,转化思想和整体思想也是本章考查重点。
会用代入消元法解含有未知数系数为1的二元一次方程组。会运用代入法解未知数系数都不是1的二元一次方程组。会用加减法求未知数系数相等或互为相反数的二元一次方程组的解。学会使用方程变形,再用加减消元法解二元一次方程组。灵活运用代入消元法、加减消元法解题。
3.二元一次方程组的应用:列二元一次方程组的关键是能正确分析出题目中的等量关系,题目内容往往与生活实际相贴近,与社会关系的热点问题相联系,请平时注意搜集、观察与分析。
第八章 一元一次不等式
1.判断不等式是否成立:关键是分析判定不等号的变化,变化的依据是不等式的性质,特别注意的是,不等式两边都乘以(或除以)同一个负数时,要改变不等号方向;反之,若不等式的不等号方向发生改变,则说明不等式两边同乘以(或除以)了一个负数。因此,在判断不等式成立与否或由不等式变形求某些字母的范围时,要认真观察不等式的形式与不等号方向。
2.解一元一次不等式(组):解一元一次不等式的步骤与解一元一次方程的步骤大致相同,应注意的是,不等式两边所乘以(或除以)的数的正负,并根据不同情况灵活运用其性质。一元一次不等式(组)常与分式、根式、一元二次方程、函数等知识相联系,解决综合性问题
3.求不等式(组)的特殊解:不等式(组)的解往往是有无数多个,但其特殊解在某些范围内是有限的,如整数解、非负整数解,要求这些特殊解,首先是确定不等式(组)的解集, 然后再找到相应的答案。注意应用数形结合思想。
4.列不等式(组)解应用题:注意分析题目中的不等量关系,考查的热点是与实际生活密切相联的不等式(组)应用题。
第九章 多边形
1. 多边形:一般来说,多边形是由一些线段依次首尾相连围成的封闭图形。我们通常根据多边形的边数将它们分为三角形、四边形、五边形……
2. n边形:由n条线段依次首尾相接围成的封闭图形叫做叫做n边形(n为大于或等于3的整数)。
3. 多边形的分割:从一个多边形的某一个顶点出发,分别连接这个顶点与其他各顶点,可以把这个多边形分割成若干个三角形。
4. 从n边形的一个顶点出发有(n-3)条对角线,把n边形分成(n-2)个三角形。一个n边形共有n个顶点,n条边,n(n-3)÷2 条对角线。
5. 圆:一条线段绕着它的一端旋转一周形成的图形叫做圆。
6. 圆上两点之间的线段叫做弧,由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
7. 圆可以分成若干个扇形。
8. 圆上两点(连接两点的线段不是直径)将圆分成两个部分,一部分大于半圆,一部分小于半圆,因此圆上的两点分圆成两条弧,每条弧都对应一个扇形。
⒐了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高.了解三角形的稳定性。三角形两边之和大于第三边。②探索并掌握三角形中位线的性质。
⒑重点: 1.四边形的基本概念:
(1)四边形:平面内,四条线段首尾顺次相接,如果任何两条线段都不在同一直线上,所形成的图形叫做四边形.
(2)各部分名称: 边:组成四边形各边的线段 顶点:相邻两边的公共点 内角:从四边形内部看相邻两边所成的角,简称为角. 对角线:连结四边形不相邻的两个顶点的线段. 外角:四边形的一条边与
第十章 轴对称
�8�5 轴对称与轴对称图形是不同的概念:“轴对称”是指两个图形之间的形状与位置关系 “轴对称图形”是指一个图形的形状。
�8�5 定义:有两边相等的三角形是等腰三角形
�8�5 等腰三角形的性质:
等腰三角形的两个底角相等。 (简写成“等边对等角”)
等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成“三线合一”)
等腰三角形的两底角的平分线相等。(两条腰上的中线相等,两条腰上的高相等)
等腰三角形的底边上到两条腰的距离相等
等腰三角形的一腰上的高与底边的夹角等于顶角的一半
�8�5 等腰三角形的判定: 有两个角相等的三角形是等腰三角形
�8�5 三角形的一些性质:
1.三角形的任何两边的和一定大于第三边 ,由此亦可证明得三角形的任意两边的差一定小于第三边。
2.三角形内角和等于180度
3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。
图形的轴对称是中考题的新题型,热点题型。分值一般为3-4分,题型以填空,选择,作图为主,偶尔也会出现解答题。
考察内容:①轴对称和轴对称图形的性质判别。②注意镜面对称与实际问题的解决。 突破方法: ①熟练掌握图形的对称基本性质和基本作图法。②结合具体的问题大胆尝试,动手操作,探究发现其内在的规律。③注重对网格内和坐标内的图形的变换试题的研究,熟练掌握其常用的解题方法。④关注图形与变换创新题,弄清其本质,掌握基本解题方法,如动手操作法,折叠法,旋转法。
第十一章 体验不确定现象
1、 必然事件:在每次实验中一定发生的事件,发生的机会是100%。
2、 不可能事件:在每次实验中一定不发生的事件,发生的机会是0。
(必然事件与不可能事件统称为确定事件)
3、 不确定事件(随机事件):无法确定在一次试验中会不会发生的事件,发生
的机会是0~1之间的数。
4、 “不太可能”不等于“不可能”,可能性小并不意味着一定不会发生。
5.机会:不确定事件或随机事件经过多次试验使之趋于稳定时状态,就是这个事件的成功率我们以后把这种成功率表示一随机事件发生的可能性,即机会。
6.机会的均等与不等:不确定事件成功与失败的机会各占一半即0.50时,我们称这不确定事件的机会均等,否则就是机会不等。
7、 不确定现象发生的机会的估计。
(1) 实验法:通过大量重复实验来估计。
(2) 分析法:从实验结果的所有可能情况来确定。
8、 不确定事件在大量重复实验中事件发生频率的稳定性。
7、 实验必须在相同条件下进行,实验次数越多,得到的机会估计值就越好。
8、 实验是估计机会大小的一种方法。

‘肆’ 七年级数学知识点汇总

http://sx.zxxk.com/softnew.aspx?ClassID=463
在左边的那栏中

‘伍’ 初一数学重点知识!!还有英语语法!!!

初一数学概念 实数: —有理数与无理数统称为实数。 有理数: 整数和分数统称为有理数。 无理数: 无理数是指无限不循环小数。 自然数: 表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。 数轴: 规定了圆点、正方向和单位长度的直线叫做数轴。 相反数: 符号不同的两个数互为相反数。 倒数: 乘积是1的两个数互为倒数。 绝对值: 数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。 数学定理公式 有理数的运算法则 ⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。 ⑵减法法则:减去一个数,等于加上这个数的相反数。 ⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。 ⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。 我不知道你是哪个版的... \ 英语 一、初一英语语法 —— 词法 1、名词 A)、名词的数 我们知道名词可以分为可数名词和不可数名词,而不可数名词它没有复数形式,但可数名词却有单数和复数之分,复数的构成如下: 一)在后面加s。如:fathers, books, Americans, Germans, apples, bananas 二)x, sh, ch, s, tch后加es。如:boxes, glasses, dresses, watches, wishes, faxes 三)1)以辅音字母加y结尾的变y为i再加es 如:baby-babies, family-families, ty-ties, comedy-comedies, documentary-documentaries, story-stories 2)以元音字母加y结尾的直接加s。如:day-days, boy-boys, toy-toys, key-keys, ways 四)以o结尾加s(外来词)。如:radios, photos, 但如是辅音加o的加es:如: tomatoes西红柿, potatoes马铃薯 五)以f或fe结尾的变f为v再加es(s)。如:knife-knives, wife-wives, half-halves, shelf-shelves, leaf-leaves, yourself-yourselves 六)单复数相同(不变的)有:fish, sheep, deer鹿子, Chinese, Japanese 七)一般只有复数,没有单数的有:people,pants, shorts, shoes, glasses, gloves, clothes, socks 八)单词形式不变,既可以是单数也可以是复数的有:police警察局,警察, class班,同学, family家,家庭成员 九)合成的复数一般只加主要名词,多数为后一个单词。如:action movie-action movies, pen pal-pen pals; 但如果是由man或woman所组成的合成词的复数则同时为复数。如:man doctor-men doctors, woman teacher-women teachers 十)有的单复数意思不同。如:fish鱼 fishes鱼的种类, paper纸 papers报纸,卷子,论文, work工作 works作品,工厂, glass玻璃 glasses玻璃杯,眼镜, orange桔子水 oranges橙子, light光线 lights灯, people人 peoples民族, time时间 times时代, 次数, chicken 鸡肉 chickens 小鸡 十一) 单个字母的复数可以有两种形式直接加s或’s。如:Is (I’s), Ks (K’s)。但如是缩略词则只加s。如:IDs, VCDs, SARs 十二) 特殊形式的有:child-children, man-men, woman-women, foot-feet, mouse-mice, policeman-policemen, Englishman-Englishmen B)名词的格 当我们要表示某人的什么东西或人时,我们就要使用所有格形式。构成如下: 一)单数在后面加’s。如:brother’s, Mike’s, teacher’s 二)复数以s结尾的直接在s后加’,如果不是以s结尾的与单数一样处理。如:Teachers’ Day教师节, classmates’; Children’s Day六一节, Women’s Day三八节 三)由and并列的名词所有时,如果是共同所有同一人或物时,只加最后一个’s,但分别拥有时却分别按单数形式处理。如:Mike and Ben’s room迈克和本的房间(共住一间),Mike’s and Ben’s rooms迈克和本的房间(各自的房间) 2、代词 项目 人称代词 物主代词 指示代词 反身代词 人称 主格 宾格 形容词 名词性 第一人称 单数 I me my mine myself 复数we us our ours ourselves 第二人称 单数 you you your yours yourself 复数you you your yours yourselves 第三人称 单数 she her her hers herself he him his his himself it it its its this that itself 复数they them their theirs these those themselves 3、动词 A) 第三人称单数 当动词是第三人称单数时,动词应该像名词的单数变动词那样加s,如下: 一)一般在词后加s。如:comes, spells, waits, talks, sees, dances, trains 二)在x, sh, ch, s, tch后加es。如:watches, washes, wishes, finishes 三)1)以辅音字母加y结尾的变y为i再加es。如:study-studies, hurry-hurries, try-tries 2)以元音字母加y结尾的直接加s。如:plays, says, stays, enjoys, buys 四)以o结尾加es。如:does, goes 五)特殊的有:are-is, have-has B) 现在分词 当我们说某人正在做什么事时,动词要使用分词形式,不能用原形,构成如下: 一)一般在后加ing。如:spell-spelling, sing-singing, see-seeing, train-training, play-playing, hurry-hurrying, watch-watching, go-going, do-doing 二)以不发音e的结尾的去掉e再加ing。如:dance-dancing, wake-waking, take-taking, practice-practicing, write-writing, have-having 三)以重读闭音节结尾且一个元音字母+一个辅音字母(注意除开字母组合如show –showing, draw-drawing)要双写最后的辅音字母再加ing。如:put-putting, run-running, get-getting, let-letting, begin-beginning 四)以ie结尾的变ie为y再加ing。如:tie-tying系 die-dying死 lie-lying 位于 4、形容词的级 我们在对两个或以上的人或物进行对比时,则要使用比较或最高级形式。构成如下: 一) 一般在词后加er或est(如果是以e结尾则直接加r或st)。如:greater-greatest, shorter –shortest, taller –tallest, longer –longest, nicer- nicest, larger -largest 二)以重读闭音节结尾且1个元音字母+1个辅音字母(字母组合除外,如few-fewer fewest)结尾的双写结尾的辅音再加er /est。如:big-bigger biggest, red-redder reddest, hot-hotter hottest 三) 以辅音字母+y结尾的变y为i加er/est。如:happy-happier happiest, sorry-sorrier sorriest, friendly-friendlier friendliest(more friendly most friendly), busy-busier busiest, easy-easier easiest 四)特殊情况:(两好多坏,一少老远) good/well - better best many/much - more most bad/ill – worse worst little- less least old- older/elder oldest/eldest far- farther/further farthest/furthest 5、数词 (基变序,有规则;一、二、三,自己背;五、八、九、十二;其它后接th;y结尾,变为i, eth跟上去。) first, second, third; fifth, eighth, ninth, twelfth; seventh, tenth, thirteenth, hundredth; twenty-twentieth, forty-fortieth, ninety-ninetieth 二、 初一英语语法 —— 句式 1.陈述句 肯定陈述句 a) This is a book. (be动词) b) He looks very young. (连系动词) c) I want a sweat like this. (实义动词) d) I can bring some things to school. (情态动词) e) There’s a computer on my desk. (There be结构) 否定陈述句 a) These aren’t their books. b) They don’t look nice. c) Kate doesn’t go to No. 4 Middle School. d) Kate can’t find her doll. e) There isn’t a cat here. (=There’s no cat here.) 2. 祈使句 肯定祈使句 a) Please go and ask the man. b) Let’s learn English! c) Come in, please. 否定祈使句a) Don’t be late. b) Don’t hurry. 3. 疑问句 1) 一般疑问句 a) Is Jim a student? b) Can I help you? c) Does she like salad? d) Do they watch TV? e) Is she reading? 肯定回答: a) Yes, he is. b) Yes, you can. c) Yes, she does. d) Yes, they do. e) Yes, she is. 否定回答: a) No, he isn’t. b) No, you can’t. c) No, she doesn’t. d) No, they don’t. e) No, she isn’t. 2) 选择疑问句 Is the table big or small? 回答 It’s big./ It’s small. 3) 特殊疑问句 ① 问年龄 How old is Lucy? She is twelve. ② 问种类 What kind of movies do you like? I like action movies and comedies. ③ 问身体状况 How is your uncle? He is well/fine. ④ 问方式 How do/can you spell it? L-double O-K. How do we contact you? My e-mail address is [email protected]. ⑤ 问原因 Why do you want to join the club? ⑥ 问时间 What’s the time? (=What time is it?) It’s a quarter to ten a.m.. What time do you usually get up, Rick? At five o’clock. When do you want to go? Let’s go at 7:00. ⑦ 问地方 Where’s my backpack? It’s under the table. ⑧ 问颜色 What color are they? They are light blue. What’s your favourite color? It’s black. ⑨ 问人物 Who’s that? It’s my sister. Who is the boy in blue? My brother. Who isn’t at school? Peter and Emma. Who are Lisa and Tim talking to? ⑩ 问东西 What’s this/that (in English)? It’s a pencil case. What else can you see in the picture? I can see some broccoli, strawberries and hamburgers. 11问姓名 What’s your aunt’s name? Her name is Helen./She’s Helen. What’s your first name? My first name’s Ben. What’s your family name? My family name’s Smith. 12 问哪一个 Which do you like? I like one in the box. 13 问字母 What letter is it? It’s big D/small f. 14 问价格 How much are these pants? They’re 15 dollars. 15 问电话号码 What’s your phone number? It’s 576-8349. 16 问谓语(动作) What’s he doing? He’s watching TV. 17 问职业(身份) What do you do? I’m a teacher. What’s your father? He’s a doctor. 三、 初一英语语法 —— 时态 1、一般现在时 表示普遍、经常性的或长期性的动作时使用一般现在时,它有: Be 动词:She’s a worker. Is she a worker? She isn’t a worker. 情态动词:I can play the piano. Can you play the piano? I can’t play the piano. 行为动词:They want to eat some tomatoes. Do they want to eat any tomatoes? They don’t want to eat any tomatoes. Gina has a nice watch. Does Gina have a nice watch? Gina doesn’t have a watch. 2、现在进行时 表示动词在此时正在发生或进行就使用进行时态,结构为sb be v-ing sth + 其它. I’m playing baseball. Are you playing baseball? I’m not playing baseball. Nancy is writing a letter. Is Nancy writing a letter? Nancy isn’t writing a letter. They’re listening to the pop music. Are they listening the pop music? They aren’t listening to the pop music. 追问: 数学方程概念 语法 概念我看不懂 回答: 方程多做点题 语法 在于积累 你硬看语法,死记反正我不提倡 因为记不住啊 我大学了,我感觉就是具体题里去积累 不要死记东西 追问: o

‘陆’ 七年级上册数学知识重点

?”石头听了,感谢不尽。那僧便念咒书符,大展幻术,将一
块大石登时变成一块鲜明莹洁的美玉,且又缩成扇坠大小的可
佩可拿。那僧托于掌上,笑道:“形体倒也是个宝物了!还只
没有实在的好处,须得再镌上数字,使人一见便知是奇物方妙
。然后携你到那昌明隆盛之邦,诗礼簪缨之族,花柳繁华地,
温柔富贵乡去安身乐业。”石头听了,喜不能禁,乃问:“不
知赐了弟子那几件奇处,又不知携了弟子到何地方?望乞明示
,使弟子不惑。”那僧笑道:“你且莫问,日后自然明白的说
着,便袖了这石,同那道人飘然而去,竟不知投奔何方何舍。
后来,又不知过了几世几劫,因有个空空道人访道求仙,忽从
这大荒山无稽崖青埂峰下经过,忽见一大块石上字迹分明,编
述历历。空空道人乃从头一看,原来就是无材补天,幻形入世
蒙茫茫大士渺渺真人携入红尘,历尽离合悲欢炎凉世态的一段
此系身前身后事,倩谁记去作奇传?诗后便是此石坠落之乡投
胎之处,亲自经历的一段陈迹故事。其中家庭闺阁琐事,以及
闲情诗词倒还全备,或可适趣解闷,然朝代年纪、地舆邦国反
空空道人遂向石头说道:“石兄,你这一段故事,据你自己说
有些趣味,故编写在此,意欲问世传奇。据我看来,第一件,
无朝代年纪可考;第二件,并无大贤大忠理朝廷治风俗的善政
,其中只不过几个异样女子,或情或痴,或小才微善,亦无班
姑蔡女之德能。我纵抄去,恐世人不爱看呢。”石头笑答道:
“我师何太痴耶!若云无朝代可考,今我师竟假借汉唐等年纪
添缀,又有何难?但我想,历来野史,皆蹈一辙,莫如我这不
此套者,反倒新奇别致,不过只取其事体情理罢了,又何必拘
拘于朝代年纪哉!再者,市井俗人喜看理治之书者甚少,爱适
趣闲文者特多。历来野史,或讪谤君相,或贬人妻女,奸淫凶
恶,不可胜数。更有一种风月笔墨,其淫秽污臭,屠毒笔墨,
坏人子弟,又不可胜数。至若佳人才子等书,则又千部共出一
套,且其中终不能不涉于淫滥,以致满纸潘安、子建、西子
君、不过作者要写出自己的那两首情诗艳赋来,故假拟出男女
二人名姓,又必旁出一小人其间拨乱,亦如剧中之小丑然。且
鬟婢开口即者也之乎,非文即理。故逐一看去,悉皆自相矛盾
,大不近情理之话,竟不如我半世亲睹亲闻的这几个女子,虽
不敢说强似前代书中所有之人,但事迹原委,亦可以消愁破闷
;也有几首歪诗熟话,可以喷饭供酒。至若离合悲欢,兴衰际
遇,则又追踪蹑迹,不敢稍加穿凿,徒为供人之目而反失其真
传者。今之人,贫者日为衣食所累,富者又怀不足之心,纵然
一时稍闲,又有贪淫恋色,好货寻愁之事,那里去有工夫看那
理治之书?所以我这一段故事,也不愿世人称奇道妙,也不定
要世人喜悦检读,只愿他们当那醉淫饱卧之时,或避事去愁之
际,把此一玩,岂不省了些寿命筋力?就比那谋虚逐妄,却也
省了口舌是非之害,腿脚奔忙之苦。再者,亦令世人换新眼目
不比那些胡牵乱扯,忽离忽遇,满纸才人淑女、子建文君红娘
空空道人听如此说,思忖半晌,将《石头记》再检阅一遍,因
见上面虽有些指奸责佞贬恶诛邪之语,亦非伤时骂世之旨;及
至君仁臣良父慈子孝,凡伦常所关之处,皆是称功颂德,眷眷
无穷,实非别书之可比。虽其中大旨谈情,亦不过实录其事,
又非假拟妄称,一味淫邀艳约、私订偷盟之可比。因毫不干涉
时世,方从头至尾抄录回来,问世传奇。从此空空道人因空见
色,由色生情,传情入色,自色悟空,遂易名为情僧,改《石
头记》为《情僧录》。东鲁孔梅溪则题曰《风月宝鉴》。后因
曹雪芹于悼红轩中披阅十载,增删五次,纂成目录,分出章回
当日地陷东南,这东南一隅有处曰姑苏,有城曰阊门者,最是
红尘中一二等富贵风流之地。这阊门外有个十里街,街内有个
仁清巷,巷内有个古庙,因地方窄狭,人皆呼作葫芦庙。庙旁
住着一家乡宦,姓甄,名费,字士隐。嫡妻封氏,情性贤淑,
深明礼义。家中虽不甚富贵,然本地便也推他为望族了。因这

‘柒’ 初一数学知识的重点难题(上册)

其实也没什么好怕的。平时学好了么?公式背完了么?有什么不懂的题么?这几个问题每天问一下自己,最好在每天睡觉前做一下总结。在考试时,胆大心细,不能够犯没看清题,粗心的错误,因为都是借口。

彼此啦!我也要月考了。。

‘捌’ 初一数学知识要点有哪些

初一数学概念
实数:
—有理数与无理数统称为实数。
有理数:
整数和分数统称为有理数。
无理数:
无理数是指无限不循环小数。
自然数:
表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。
数轴:
规定了圆点、正方向和单位长度的直线叫做数轴。
相反数:
符号不同的两个数互为相反数。
倒数:
乘积是1的两个数互为倒数。
绝对值:
数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。

数学定理公式
有理数的运算法则
⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
⑵减法法则:减去一个数,等于加上这个数的相反数。
⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线。
数学第一章相交线

一、邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角。邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角。

二、对顶角:是两条直线相交形成的。两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”。

对顶角的性质:对顶角相等。

三、垂直

1、垂直:两条直线所成的四个角中,有一个是直角时,就说这两条直线互相垂直。其中一条叫做另一条的垂线,它们的交点叫做垂足。记做a⊥b

垂直是相交的一种特殊情形。

2、垂线的性质:

①过一点有且只有一条直线与已知直线垂直;

②连接直线外一点与直线上各点的所有线段中,垂线段最短。

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

3、画法:①一靠(已知直线)②二过(定点)③三画(垂线)

4、空间的垂直关系

四、平行线

1、 平行线:在同一平面内,不相交的两条直线叫做平行线。记做a‖b

2、 “三线八角”:两条直线被第三条直线所截形成的

① 同位角:“同方同位”即在两条直线的上方或下方,在第三条直线的同一侧。

② 内错角:“之间两侧”即在两条直线之间,在第三条直线的两侧。

③ 同旁内角“之间同旁”即在两条直线之间,在第三条直线的同旁。

3、 平行公理:经过直线外一点,有且只有一条直线与这条直线平行

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

4、 平行线的判定方法

① 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;

② 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;

③ 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;

④ 平行于同一条直线的两条直线平行;

⑤ 垂直于同一条直线的两条直线平行。

5、 平行线的性质:

①两条平行线被第三条直线所截,同位角相等;

②两条平行线被第三条直线所截,内错角相等;

③两条平行线被第三条直线所截,同旁内角互补。

6、 两条平行线的距离:同时垂直于两条平行线并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离。

7、 命题:判断一件事情的语句,叫做命题,由题设和结论两部分组成。

五平移

1、平移:在平面内将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

说明:①、平移不改变图形的形状和大小,改变图形的位置;②“将一个图形沿某个方向移动一定的距离”意味着“图形上的每一点都沿着同一方向移动了相同的距离 ”这也是判断一种运动是否为平移的关键。③图形平移的方向,不一定是水平的

2、平移的性质:经过平移,对应线段、对应角分别相等,对应点所连的线段平行且相等。 初一数学知识点归纳 第一单元 位置1、 能在具体的情景中,确定位置的方法,说出某一物体的位置。2、 用“数对”表示位置,对应列上的数字在前,行上的数字在后,记为(x,y)。3、 “数对”表示位置,易错的是(x,0),(0,y)。4、 认识方位,上北下南左西右东,两个事物一个在另一个的方向。 第二单元 分数乘法一、分数乘整数1、 意义:表示几个相同分数相加。2、 计算方法:(1)、分母不变,分子和整数相乘。 (2)、当分母和整数可以约分时,要先约分。二、分数乘分数1、意义:就是一个分数的几分之几。2、计算方法:(1)、分子乘分子,分母乘分母。。 (2)、分子和分母有能约分的要约分,再计算。三、运算律的运用1、整数乘法的运算律对于分数乘法同样适用。2、应用运算律简便计算。四、倒数1、乘积是1的两个数互为倒数。2、求法:把数的分子和分母的位置颠倒。3、1的倒数就是1本身,0没有倒数。五、解决问题1、求一个数的几分之几。列式:标准量×几分之几2、求一个数多(或少)几分之几。列式:标准量×(1±几分之几) 标准量土标准量×几分之几3、 求一个数占另一个数的几分之几。列式:几分之几4、 用画线段图分析分数乘法应用题的数量关系。 第三单元 分数除法一、 类型1、 分数除以整数,表示把分数平均分成整数份。2、 分数除以分数,表示b/a中有多少个d/c。3、 整数除以分数,表示a中有多少个c/d。二、 计算方法:除以一个数等于乘这个数的倒数(0除外)。三、 分数除法的意义与整数除法相同,都是乘法的逆运算。四、 分数混合运算顺序,简便算法。五、 解决问题1、 甲数是乙数的几分之几。列式:甲/乙。2、 乙数的几分之几等于甲数。列式:甲数=乙数×几分之几。乙数=甲数÷几分之几。3、 甲数比乙数多(或少)几分之几。列式:甲数=乙数×(1土几分之几)甲数=乙数土乙数×几分之几。标准量:“比”字后面的为标准量。4、 若求长方形的长是宽的几倍:就是求长和宽的比:长/宽。若求长方形的宽是长的几分之几,就是求长和宽的比:长/宽。六、 比的意义:用两个数相除,又叫两个数的比,符号“:”比的结果叫做比值。1、 在a:b中,a叫比的前项,b叫比的后项。2、 比与除法和分数的关系。a:b=a÷b=a/b。3、 求比值两项的单位名称要统一,比值是一个数,没有单位。4、 比的基本性质a:b=am:bma:b=a÷m:b÷m5、 比化成最简整数比:(1) 有分数,前项和后项都乘分母的最小公倍数。(2) 无分数,前项和后项都除以最大公约数。(3) 有小数,可先化为整数或分数。6、解决问题总量×被分份数/总份数=要求的量 第四单元圆一、 圆的认识,由曲线围成,外形美,易滚动。1、 圆心,用o表示。2、 半径,连接圆心和圆上任意一点的线段叫半径,用r表示。3、 直径,通过圆心并且两端都在圆上的线段叫直径,用d表示。4、 半径和直径的关系。5、 轴对称图形及对称轴,圆又无数条对称轴,是直径所在的直线。二、 圆的周长1、 圆周率,是周长与直径的比,是无限不循环小数。2、 公式:c=πd或c=2πr3、 已知圆的周长求半径和直径。三、 圆的面积1、公式S=πR22、已知圆的半径、直径或周长能分别求圆的面积。3、环形面积公式S=πR2-πr24、扇形、弧、圆心角。5、在周长一定的情况下,圆的面积最大。在面积一定的情况下,圆的周长最短。6、 确定起跑线的位置。 第五单元百分数1、 百分数的写法。百分号“%”2、 百分数的意义:表示一个数是另一个数的百分之几。3、 百分数与分数的区别:分数既可以表示一个具体的数,又可以表示两个数之间的关系。百分数表示一个数是另一个数的百分之几,只表示两个数的关系,不是具体的数,不能写单位名称。另外百分数的分子可以是小数和大于一百的数。4、 百分数与分数、小数的互化。百分数化为小数:去掉百分号,小数点向左移动两位;小数化为百分数:小数点向右移动两位,添上百分号;百分数化为分数:可先化为分母是一百的分数,能约分的要约分;分数化为百分数:先把分数化为小数,再化为百分数。5、解决问题①、达标率,发芽率的公式。(甲占乙的百分之几。)达标率=达标的人数/总人数×100%发芽率=发芽的数量/种子的总数×100%②、甲比乙少(或多)百分之几。确定单位“1”。③、甲增加了百分之几是多少?增加了多少?6、折扣,表示十分之几,也就是百分之几十。折扣问题求实求一个数的百分之几是多少的问题。7、纳税。①、根据国家各种税法的规定,按照一定的比率,把集体或个人的收入的一部分缴纳给国家叫做纳税。②、缴纳的税款叫做应纳税额。按一定的比率纳税叫做税率。③、税率=应纳税款/各种收入×100%应纳税款=税率×各种收入。8、利率。①、存款的好处。②、利息=本金×利率×时间③、取款=本金+利息-利息税(本金+税后利息)。 第六单元统计一、 扇形统计图1、 能反映部分量同总量之间的关系2、 用整个圆表示总量,用各个扇形表示各部分数量占总量的百分之几。3、 利用扇形统计图计算分析。二、 合理存款1、 教育储蓄。2、 国债利率3、 设计存款方案4、 合理存款 第七单元数学广角鸡兔同笼问题利用解方程的方法解决问题。

‘玖’ 七年级下册数学的重点知识的题

第一章《整式的运算》单元测试
班级: 姓名: 分数:
一、选择题(每题3分,共30分)
1.在代数式 中,下列说法正确的是( )。
(A)有4个单项式和2个多项式, (B)有4个单项式和3个多项式;
(C)有4个单项式和2个多项式, (D)有5个单项式和4个多项式。
2.一个五次多项式与一个四次多项式的和一定是( )。
(A)单项式 (B)多项式 (C)五次多项式或单项式 (D)以上都不对
3.减去-3x得 的式子是( )。
(A) (B) (C) (D)
4.下列各式中正确的是( )
(A) (B) (C) (D)
5.若a = -0.42, b = -4-2, c = ,d = , 则 a、b、c、d 的大小关系为( )
(A) a<b<c<d (B)b<a<d<c (C) a<d<c<b (D)c<a<d<b
6.若 为一完全平方式,则k为( )
(A) 36y2 (B) 9y2 (C) 4y2 (D)y2
7.下列多项式的乘法中可用平方差公式计算的是( )
A. B. C. D.
8.若x2-x-m=(x-m)(x+1)且x≠0,则m=( )
(A)0 (B)-1 (C)1 (D)2
9.已知|x|=1,|y|= ,则(x20)3-x3y的值等于( )
(A) (B) (C) (D)
10.不论x、y为什么数,代数式 的值 ( )
A.总不小于2 B.总不小于7
C.可为任何有理数 D.可能为负数
二、填空题:(每题2分,共20分)
11.单项式 的系数是 ,次数是 .
12. .
13. .
14.若32x-1=1,则x= , 若3x= ,则x= , 若0.000372=3.72×10x,则x= .
15.一个只含有字母a的二次三项式,它的二次项系数,一次项系数均为-3,常数项为1,则这个多项式为
16.若单项式-2x3yn-3是一个关于x 、y 的五次单项式,则n = .
17. .
18.有一名同学把一个整式减去多项式xy+5yz+3xz误认为加上这个多项式,结果答案为 5yz-3xz+2xy,则原题正确答案为 .
19.已知 ,则 =___________________. =___________________.
20.若 , ,则 .
三、解答下列各题
21.计算题:(6分×6=36分)
(1) (2)

(3) (4)

(5)〔 xy(x2+y)(x2-y)+ x2y7÷3xy4〕÷(- x4y)

(6)先化简并求值:
,其中

22、若 的积不含x的一次项,求a的值。(6分)

23、已知: a2+b2-2a+6b+10 = 0, 求:a2005- 的值.(7分)

24、请先阅读下面的解题过程,然后仿照做下面的题.
已知: ,求: 的值.

若: ,求: 的值.(7分)

25、计算: (6分)

26、(8分) 有12名 游客要赶往离住地40千米的一个火车站去乘火车,离开车时间只有3小时了,他们步行的速度为每小时6千米,靠走路是来不及了,唯一可以利用的交通工具只有一辆小汽车,但这辆小汽车连司机在内最多能乘5人,汽车的速度为每小时60千米。(1)甲游客说:我们肯定赶不上火车 (2)乙游客说:只要我们肯吃苦,一定能赶上火车 (3)丙游客说:赶上或 赶不上火车,关键取决于我们自己。
亲爱的同学,当你身处其境,一定也有自己的想法,请你就某位游客的说法,用数学知识加以说理。