当前位置:首页 » 基础知识 » 数学高一必修一知识点
扩展阅读
日本穿越动漫都有哪些 2025-01-07 18:36:04

数学高一必修一知识点

发布时间: 2022-02-25 00:07:02

‘壹’ 高中必修一数学知识归纳

高中高一数学必修1各章知识点总结

第一章 集合与函数概念

一、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

1.元素的确定性; 2.元素的互异性; 3.元素的无序性

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

2.集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}

4、集合的分类:

1.有限集 含有有限个元素的集合

2.无限集 含有无限个元素的集合

3.空集 不含任何元素的集合 例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A

2.“相等”关系(5≥5,且5≤5,则5=5)

实例:设 A={x|x2-1=0} B={-1,1} “元素相同”

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

① 任何一个集合是它本身的子集。AíA

②真子集:如果AíB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A)

③如果 AíB, BíC ,那么 AíC

④ 如果AíB 同时 BíA 那么A=B

3. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

三、集合的运算

1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.

记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.

3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,

A∪φ= A ,A∪B = B∪A.

4、全集与补集

(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

记作: CSA 即 CSA ={x | x?S且 x?A}

S

CsA

A

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

二、函数的有关概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3 函数的定义域、值域要写成集合或区间的形式.

定义域补充

能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.

(又注意:求出不等式组的解集即为函数的定义域。)

构成函数的三要素:定义域、对应关系和值域

再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)

(见课本21页相关例2)

值域补充

(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。

3. 函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.

C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A }

图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。

(2) 画法

A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.

B、图象变换法(请参考必修4三角函数)

常用变换方法有三种,即平移变换、伸缩变换和对称变换

(3)作用:

1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。

发现解题中的错误。

4.快去了解区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.

5.什么叫做映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作“f:A B”

给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象

说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。

常用的函数表示法及各自的优点:

1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征.

注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值

补充一:分段函数 (参见课本P24-25)

在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.

补充二:复合函数

如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数。

例如: y=2sinX y=2cos(X2+1)

7.函数单调性

(1).增函数

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数。区间D称为y=f(x)的单调增区间(睇清楚课本单调区间的概念)

如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

注意:1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;

2 必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) 。

(2) 图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3).函数单调区间与单调性的判定方法

(A) 定义法:

1 任取x1,x2∈D,且x1<x2;2 作差f(x1)-f(x2);3 变形(通常是因式分解和配方);4 定号(即判断差f(x1)-f(x2)的正负);5 下结论(指出函数f(x)在给定的区间D上的单调性).

(B)图象法(从图象上看升降)_

(C)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:

函数
单调性

u=g(x)





y=f(u)





y=f[g(x)]





注意:1、函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗?

8.函数的奇偶性

(1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2).奇函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。

2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

总结:利用定义判断函数奇偶性的格式步骤:1 首先确定函数的定义域,并判断其定义域是否关于原点对称;2 确定f(-x)与f(x)的关系;3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.

注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .

9、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)

10.函数最大(小)值(定义见课本p36页)

1 利用二次函数的性质(配方法)求函数的最大(小)值2 利用图象求函数的最大(小)值3 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

第二章 基本初等函数

一、指数函数

(一)指数与指数幂的运算

1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root),其中 >1,且 ∈ *.

当 是奇数时,正数的 次方根是一个正数,负数的 次方根是一个负数.此时, 的 次方根用符号 表示.式子 叫做根式(radical),这里 叫做根指数(radical exponent), 叫做被开方数(radicand).

当 是偶数时,正数的 次方根有两个,这两个数互为相反数.此时,正数 的正的 次方根用符号 表示,负的 次方根用符号- 表示.正的 次方根与负的 次方根可以合并成± ( >0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作 。

注意:当 是奇数时, ,当 是偶数时,
2.分数指数幂

正数的分数指数幂的意义,规定:


0的正分数指数幂等于0,0的负分数指数幂没有意义

指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

3.实数指数幂的运算性质

(1) · ;

(2) ;

(3) .

(二)指数函数及其性质

1、指数函数的概念:一般地,函数 叫做指数函数(exponential ),其中x是自变量,函数的定义域为R.

注意:指数函数的底数的取值范围,底数不能是负数、零和1.

2、指数函数的图象和性质

a>1
0<a<1

图象特征
函数性质

向x、y轴正负方向无限延伸
函数的定义域为R

图象关于原点和y轴不对称
非奇非偶函数

函数图象都在x轴上方
函数的值域为R+

函数图象都过定点(0,1)

自左向右看,

图象逐渐上升
自左向右看,

图象逐渐下降
增函数
减函数

在第一象限内的图象纵坐标都大于1
在第一象限内的图象纵坐标都小于1

在第二象限内的图象纵坐标都小于1
在第二象限内的图象纵坐标都大于1

图象上升趋势是越来越陡
图象上升趋势是越来越缓
函数值开始增长较慢,到了某一值后增长速度极快;
函数值开始减小极快,到了某一值后减小速度较慢;

注意:利用函数的单调性,结合图象还可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,则 ; 取遍所有正数当且仅当 ;
(3)对于指数函数 ,总有 ;
(4)当 时,若 ,则 ;

二、对数函数

(一)对数

1.对数的概念:一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)

说明:1 注意底数的限制 ,且 ;

2 ;

3 注意对数的书写格式.

两个重要对数:

1 常用对数:以10为底的对数 ;

2 自然对数:以无理数 为底的对数的对数 .

对数式与指数式的互化

对数式 指数式

对数底数 ← → 幂底数

对数 ← → 指数

真数 ← → 幂

(二)对数的运算性质

如果 ,且 , , ,那么:

1 · + ;

2 - ;

3 .

注意:换底公式

( ,且 ; ,且 ; ).

利用换底公式推导下面的结论(1) ;(2) .

(二)对数函数

1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).

注意:1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。

如: , 都不是对数函数,而只能称其为对数型函数.

2 对数函数对底数的限制: ,且 .

2、对数函数的性质:

a>1
0<a<1

图象特征
函数性质

函数图象都在y轴右侧
函数的定义域为(0,+∞)

图象关于原点和y轴不对称
非奇非偶函数

向y轴正负方向无限延伸
函数的值域为R

函数图象都过定点(1,0)

自左向右看,

图象逐渐上升
自左向右看,

图象逐渐下降
增函数
减函数

第一象限的图象纵坐标都大于0
第一象限的图象纵坐标都大于0

第二象限的图象纵坐标都小于0
第二象限的图象纵坐标都小于0

(三)幂函数

1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.

2、幂函数性质归纳.

(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);

(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;

(3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.

第三章 函数的应用

一、方程的根与函数的零点

1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。

2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。即:

方程 有实数根 函数 的图象与 轴有交点 函数 有零点.

3、函数零点的求法:

求函数 的零点:

1 (代数法)求方程 的实数根;

2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数 .

1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.

2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.

3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.
赞同0|评论

‘贰’ 必修一数学知识点归纳有哪些

必修一数学知识点归纳有:

1、抛物线是轴对称图形。对称轴为直线x=—b/2a。对称轴与抛物线的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)。

2、一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。

3、对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

4、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点。

5、棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。

‘叁’ 高中数学必修1知识点总结

马上就要高考了,现在高中数学让很多孩子头疼,很多的家长还有孩子都开始着急,他们都在上一些辅导班,都在采取一对一的辅导,对于一对一的教师都是可以抓住孩子的一些弱点,然后还要了解他们的学习过程,还会帮助学生制定一些计划,帮助他们提高学习的效率,对于高中数学,一定掌握学习的方法,才可以提高成绩.高中数学都要学习什么知识?

高中数学知识

对于高中数学的一些知识,其实还是很简单的,只要你抓住学习的方法,从中找到乐趣,让自己喜欢上数学,对你的学习是很有帮助的,至于一对一辅导,其实还是有用的,好的老师会给你讲述好的学习方法,然后让你考一个好成绩,拿到满意的答卷.

‘肆’ 高中数学必修一每一章的知识点与公式

第一章 集合与函数概念
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集
2..集合的中元素的三个特性:
(1) 元素的确定性如:世界上最高的山
(2) 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3..集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 aA
 注意:常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集 N*或 N+
整数集Z
有理数集Q
实数集R
(2) 集合的表示方法:列举法与描述法。
①列举法:{a,b,c……} 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…
②描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。{xR| x-3>2} ,{x| x-3>2}

③语言描述法:例:{不是直角三角形的三角形}
数学式子描述法:具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},…;
例:不等式x-3>2的解集是{xR| x-3>2}或{x| x-3>2}
强调:描述法表示集合应注意集合的代表元素
{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。
辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

④ Venn图:
4、集合的分类:
(1) 有限集 含有有限个元素的集合
(2) 无限集 含有无限个元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A
2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

即:① 任何一个集合是它本身的子集。AA
3.真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A B(或B A)
③如果 AB, BC ,那么 AC
④ 如果AB 同时 BA 那么A=B
任何一个集合都是它本身的子集,但一定不是它本身的真子集

4.. 不含任何元素的集合叫做空集,记为Φ
规定:
空集是任何集合的子集,
空集是任何非空集合的真子集。
⑴有n个元素的集合,含有2n个子集,2n-1个真子集,含有 个非空真子集
⑵设A B C 三个集合中元素个数分别为 m x n (m x n都是真正数且m<n)
B  C  A 则C的个数为 个
B C  A 或A C  B则C的个数为 -1个

B C A则C的个数为 -2个

三、集合的运算
1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.
记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.
2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.
3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,
A∪φ= A ,A∪B = B∪A.
4、全集与补集
(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
记作: CSA 即 CSA ={x  xS且 xA}
(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。
(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U
、集合的运算
运算类型 交 集 并 集 补 集
定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).
设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
记作 ,即
CSA=








质 A A=A
A Φ=Φ
A B=B A
A B A
A B B
A A=A
A Φ=A
A B=B A
A B A
A B B
(CuA) (CuB)
= Cu (A B)
(CuA) (CuB)
= Cu(A B)
A (CuA)=U
A (CuA)= Φ.
第二章 函数
指数与对数运算
一.分数指数幂与根式:
如果 ,则称 是 的 次方根, 的 次方根为0,若 ,则当 为奇数时, 的 次方根有1个,记做 ;当 为偶数时,负数没有 次方根,正数 的 次方根有2个,其中正的 次方根记做 .负的 次方根记做 .
1.负数没有偶次方根;
2.两个关系式: ;
3、正数的正分数指数幂的意义: ;
正数的负分数指数幂的意义: .
4、分数指数幂的运算性质:
⑴ ; ⑵ ;
⑶ ; ⑷ ;
⑸ ,其中 、 均为有理数, , 均为正整数
二.对数及其运算
1.定义:若 ,且 , ,则 .
2.两个对数:
⑴ 常用对数: , ;
⑵ 自然对数: , .
3.三条性质:
⑴ 1的对数是0,即 ;
⑵ 底数的对数是1,即 ;
⑶ 负数和零没有对数.
4.四条运算法则:
⑴ ; ⑵ ;
⑶ ; ⑷ .
5.其他运算性质:
⑴ 对数恒等式: ;
⑵ 换底公式: ;
⑶ ; ;
⑷ .
函数的概念
一.映射:设A、B两个集合,如果按照某中对应法则 ,对于集合A中的任意一个元素,在集合B中都有唯一的一个元素与之对应,这样的对应就称为从集合A到集合B的映射.
二.函数:在某种变化过程中的两个变量 、 ,对于 在某个范围内的每一个确定的值,按照某个对应法则, 都有唯一确定的值和它对应,则称 是 的函数,记做 ,其中 称为自变量, 变化的范围叫做函数的定义域,和 对应的 的值叫做函数值,函数值 的变化范围叫做函数的值域.
三.函数 是由非空数集 到非空数集B的映射.
四.函数的三要素:解析式;定义域;值域.
函数的解析式
一.根据对应法则的意义求函数的解析式;
例如:已知 ,求函数 的解析式.
二.已知函数的解析式一般形式,求函数的解析式;
例如:已知 是一次函数,且 ,函数 的解析式.
三.由函数 的图像受制约的条件,进而求 的解析式.
函数的定义域
一.根据给出函数的解析式求定义域:
⑴ 整式:
⑵ 分式:分母不等于0
⑶ 偶次根式:被开方数大于或等于0
⑷ 含0次幂、负指数幂:底数不等于0
⑸ 对数:底数大于0,且不等于1,真数大于0
二.根据对应法则的意义求函数的定义域:
例如:已知 定义域为 ,求 定义域;
已知 定义域为 ,求 定义域;
三.实际问题中,根据自变量的实际意义决定的定义域.
函数的值域
一.基本函数的值域问题:
名称 解析式 值域
一次函数

二次函数
时,
时,

反比例函数
,且

指数函数

对数函数

三角函数

二.求函数值域(最值)的常用方法:函数的值域决定于函数的解析式和定义域,因此求函数值域的方法往往取决于函数解析式的结构特征,常用解法有:观察法、配方法、换元法(代数换元与三角换元)、常数分离法、单调性法、不等式法、*反函数法、*判别式法、*几何构造法和*导数法等.
反函数
一.反函数:设函数 的值域是 ,根据这个函数中 , 的关系,用 把 表示出,得到 .若对于 中的每一 值,通过 ,都有唯一的一个 与之对应,那么, 就表示 是自变量, 是自变量 的函数,这样的函数 叫做函数 的反函数,记作 ,习惯上改写成 .
二.函数 存在反函数的条件是: 、 一一对应.
三.求函数 的反函数的方法:
⑴ 求原函数的值域,即反函数的定义域
⑵ 反解,用 表示 ,得
⑶ 交换 、 ,得
⑷ 结论,表明定义域
四.函数 与其反函数 的关系:
⑴ 函数 与 的定义域与值域互换.
⑵ 若 图像上存在点 ,则 的图像上必有点 ,即若 ,则 .
⑶ 函数 与 的图像关于直线 对称.
函数的奇偶性:
一.定义:对于函数 定义域中的任意一个 ,如果满足 ,则称函数 为奇函数;如果满足 ,则称函数 为偶函数.
二.判断函数 奇偶性的步骤:
1.判断函数 的定义域是否关于原点对称,如果对称可进一步验证,如果不对称;
2.验证 与 的关系,若满足 ,则为奇函数,若满足 ,则为偶函数,否则既不是奇函数,也不是偶函数.
二.奇函数的图象关于原点对称,偶函数的图象关于y轴对称.
三.已知 、 分别是定义在区间 、 上的奇(偶)函数,分别根据条件判断下列函数的奇偶性.

奇 奇 奇 奇 奇 偶
奇 偶 奇
偶 奇 偶 奇
偶 偶 偶 偶 偶

五.若奇函数 的定义域包含 ,则 .
六.一次函数 是奇函数的充要条件是 ;
二次函数 是偶函数的充要条件是 .
函数的周期性:
一.定义:对于函数 ,如果存在一个非零常数 ,使得当 取定义域内的每一个值时,都有 ,则 为周期函数, 为这个函数的一个周期.
2.如果函数 所有的周期中存在一个最小的正数,那么这个最小正数就叫做 的最小正周期.如果函数 的最小正周期为 ,则函数 的最小正周期为 .
函数的单调性
一.定义:一般的,对于给定区间上的函数 ,如果对于属于此区间上的任意两个自变量的值 , ,当 时满足:
⑴ ,则称函数 在该区间上是增函数;
⑵ ,则称函数 在该区间上是减函数.
二.判断函数单调性的常用方法:
1.定义法:
⑴ 取值; ⑵ 作差、变形; ⑶ 判断: ⑷ 定论:
*2.导数法:
⑴ 求函数f(x)的导数 ;
⑵ 解不等式 ,所得x的范围就是递增区间;
⑶ 解不等式 ,所得x的范围就是递减区间.
3.复合函数的单调性:
对于复合函数 ,设 ,则 ,可根据它们的单调性确定复合函数 ,具体判断如下表:

增 增 减 减

增 减 增 减

增 减 减 增
4.奇函数在对称区间上的单调性相反;偶函数在对称区间上的单调性相同.
函数的图像
一.基本函数的图像.

二.图像变换:

将 图像上每一点向上 或向下 平移 个单位,可得 的图像

将 图像上每一点向左 或向右 平移 个单位,可得 的图像

将 图像上的每一点横坐标保持不变,纵坐标拉伸 或压缩 为原来的 倍,可得 的图像

将 图像上的每一点纵横坐标保持不变,横坐标压缩 或拉伸 为原来的 ,可得 的图像

关于 轴对称

关于 轴对称

将 位于 轴左侧的图像去掉,再将 轴右侧的图像沿 轴对称到左侧,可得 的图像

将 位于 轴下方的部分沿 轴对称到上方,可得 的图像

三.函数图像自身的对称

关系 图像特征

关于 轴对称

关于原点对称

关于 轴对称

关于直线 对称

关于直线 轴对称

关于直线 对称

周期函数,周期为

四.两个函数图像的对称

关系 图像特征

关于 轴对称


关于 轴对称


关于原点对称

关于直线 对称


关于直线 对称


关于 轴对称

‘伍’ 高一数学必修一知识点总结

高一数学必修1第一章知识点总结

一、集合有关概念
1. 集合的含义
2. 集合的中元素的三个特性:
(1) 元素的确定性,
(2) 元素的互异性,
(3) 元素的无序性,
3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2) 集合的表示方法:列举法与描述法。
 注意:常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

1) 列举法:{a,b,c……}
2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xR| x-3>2} ,{x| x-3>2}
3) 语言描述法:例:{不是直角三角形的三角形}
4) Venn图:
4、集合的分类:
(1) 有限集 含有有限个元素的集合
(2) 无限集 含有无限个元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=-5}

二、集合间的基本关系
1.“包含”关系—子集
注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A
2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”
即:① 任何一个集合是它本身的子集。AA
②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A B(或B A)
③如果 AB, BC ,那么 AC
④ 如果AB 同时 BA 那么A=B
3. 不含任何元素的集合叫做空集,记为Φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
 有n个元素的集合,含有2n个子集,2n-1个真子集
三、集合的运算
运算类型 交 集 并 集 补 集
定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).
设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
记作 ,即
CSA=








质 A A=A
A Φ=Φ
A B=B A
A B A
A B B
A A=A
A Φ=A
A B=B A
A B A
A B B
(CuA) (CuB)
= Cu (A B)
(CuA) (CuB)
= Cu(A B)
A (CuA)=U
A (CuA)= Φ.

例题:
1.下列四组对象,能构成集合的是 ( )
A某班所有高个子的学生 B着名的艺术家 C一切很大的书 D 倒数等于它自身的实数
2.集合{a,b,c }的真子集共有 个
3.若集合M={y|y=x2-2x+1,x R},N={x|x≥0},则M与N的关系是 .
4.设集合A= ,B= ,若A B,则 的取值范围是
5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,
两种实验都做错得有4人,则这两种实验都做对的有 人。
6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M= .
7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值

二、函数的有关概念
1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.
注意:
1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.
(6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义.
 相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)
(见课本21页相关例2)
2.值域 : 先考虑其定义域
(1)观察法
(2)配方法
(3)代换法
3. 函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .
(2) 画法
A、 描点法:
B、 图象变换法
常用变换方法有三种
1) 平移变换
2) 伸缩变换
3) 对称变换
4.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
(3)区间的数轴表示.
5.映射
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作f:A→B
6.分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
补充:复合函数
如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。
二.函数的性质
1.函数的单调性(局部性质)
(1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.
如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.
注意:函数的单调性是函数的局部性质;
(2) 图象的特点
如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.
(3).函数单调区间与单调性的判定方法
(A) 定义法:
○1 任取x1,x2∈D,且x1<x2;
○2 作差f(x1)-f(x2);
○3 变形(通常是因式分解和配方);
○4 定号(即判断差f(x1)-f(x2)的正负);
○5 下结论(指出函数f(x)在给定的区间D上的单调性).
(B)图象法(从图象上看升降)
(C)复合函数的单调性
复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”
注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.
8.函数的奇偶性(整体性质)
(1)偶函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
(2).奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.
(3)具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
利用定义判断函数奇偶性的步骤:
○1首先确定函数的定义域,并判断其是否关于原点对称;
○2确定f(-x)与f(x)的关系;
○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.
(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;
(3)利用定理,或借助函数的图象判定 .
9、函数的解析表达式
(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
(2)求函数的解析式的主要方法有:
1) 凑配法
2) 待定系数法
3) 换元法
4) 消参法
10.函数最大(小)值(定义见课本p36页)
○1 利用二次函数的性质(配方法)求函数的最大(小)值
○2 利用图象求函数的最大(小)值
○3 利用函数单调性的判断函数的最大(小)值:
如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);
如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);
例题:
1.求下列函数的定义域:
⑴ ⑵
2.设函数 的定义域为 ,则函数 的定义域为_ _
3.若函数 的定义域为 ,则函数 的定义域是
4.函数 ,若 ,则 =

6.已知函数 ,求函数 , 的解析式
7.已知函数 满足 ,则 = 。
8.设 是R上的奇函数,且当 时, ,则当 时 =
在R上的解析式为
9.求下列函数的单调区间:
⑴ (2)
10.判断函数 的单调性并证明你的结论.
11.设函数 判断它的奇偶性并且求证: .

‘陆’ 高一数学必修一知识点和公式

三角函数公式
两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
积化和差 2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
和差化积 sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgB=sin(A+B)/sinAsinB
-ctgA+ctgB=sin(A+B)/sinAsin
集合与函数概念
一,集合有关概念
1,集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.
2,集合的中元素的三个特性:
1.元素的确定性; 2.元素的互异性; 3.元素的无序性
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素.
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素.
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.
(4)集合元素的三个特性使集合本身具有了确定性和整体性.
3,集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
1. 用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}
2.集合的表示方法:列举法与描述法.
注意啊:常用数集及其记法:
非负整数集(即自然数集) 记作:n
正整数集 n*或 n+ 整数集z 有理数集q 实数集r
关于"属于"的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合a的元素,就说a属于集合a 记作 a∈a ,相反,a不属于集合a 记作 a(a
列举法:把集合中的元素一一列举出来,然后用一个大括号括上.
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.
①语言描述法:例:{不是直角三角形的三角形}
②数学式子描述法:例:不等式x-3]2的解集是{x(r| x-3]2}或{x| x-3]2}
4,集合的分类:
1.有限集 含有有限个元素的集合
2.无限集 含有无限个元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5}
二,集合间的基本关系
1."包含"关系—子集
注意:有两种可能(1)a是b的一部分,;(2)a与b是同一集合.
反之: 集合a不包含于集合b,或集合b不包含集合a,记作ab或ba
2."相等"关系(5≥5,且5≤5,则5=5)
实例:设 a={x|x2-1=0} b={-1,1} "元素相同"
结论:对于两个集合a与b,如果集合a的任何一个元素都是集合b的元素,同时,集合b的任何一个元素都是集合a的元素,我们就说集合a等于集合b,即:a=b
① 任何一个集合是它本身的子集.a(a
②真子集:如果a(b,且a( b那就说集合a是集合b的真子集,记作ab(或ba)
③如果 a(b, b(c ,那么 a(c
④ 如果a(b 同时 b(a 那么a=b
3. 不含任何元素的集合叫做空集,记为φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集.
三,集合的运算
1.交集的定义:一般地,由所有属于a且属于b的元素所组成的集合,叫做a,b的交集.
记作a∩b(读作"a交b"),即a∩b={x|x∈a,且x∈b}.
2,并集的定义:一般地,由所有属于集合a或属于集合b的元素所组成的集合,叫做a,b的并集.记作:a∪b(读作"a并b"),即a∪b={x|x∈a,或x∈b}.
3,交集与并集的性质:a∩a = a, a∩φ= φ, a∩b = b∩a,a∪a = a,a∪φ= a ,a∪b = b∪a.
4,全集与补集
(1)补集:设s是一个集合,a是s的一个子集(即),由s中所有不属于a的元素组成的集合,叫做s中子集a的补集(或余集)
记作: csa 即 csa ={x ( x(s且 x(a}
(2)全集:如果集合s含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集.通常用u来表示.
(3)性质:⑴cu(c ua)=a ⑵(c ua)∩a=φ ⑶(cua)∪a=u

‘柒’ 高一数学必修1的所有知识点

一、函数的定义域的常用求法:

1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数中;余切函数中;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

二、函数的解析式的常用求法:

1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法

三、函数的值域的常用求法:

1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、直接法

四、函数的最值的常用求法:

1、配方法;2、换元法;3、不等式法;4、几何法;5、单调性法

五、函数单调性的常用结论:

1、若均为某区间上的增(减)函数,则在这个区间上也为增(减)函数

2、若为增(减)函数,则为减(增)函数

3、若与的单调性相同,则是增函数;若与的单调性不同,则是减函数。

4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。

5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。

六、函数奇偶性的常用结论:

1、如果一个奇函数在处有定义,则,如果一个函数既是奇函数又是偶函数,则(反之不成立)

2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。

3、一个奇函数与一个偶函数的积(商)为奇函数。

4、两个函数和复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。

5、若函数的定义域关于原点对称,则可以表示为,该式的特点是:右端为一个奇函数和一个偶函数的和。

表1指数函数

对数数函数

定义域

值域

图象

性质过定点

过定点

减函数增函数减函数增函数

表2幂函数

奇函数

偶函数

第一象限性质减函数增函数过定点