⑴ 八年级下册数学,平行四边形应用题
我的邮箱地址是[email protected]
题我给你发过去了,请查收。
⑵ 初二数学平行四边形
(1)
GB=2GD
证明:
取GB中点M,CG中点N 则 BM=MG ①
连接MN,ND,DE,EM
因DE是△ABC的中位线
从而 DE//BC, DE=/BC2 ②
又MN是△BCG的中位线
从而 MN//BC, MN=BC/2 ③
由②③得 DE//BC, DE=BC
则 四边形MNDE是平行四边形
从而 MG=GD[平行四边形对角线互相平分]④
由①④得 MB=MG=GD
从而 GB=MB+MG=GD+GD=2GD
(2)
AF经过G点。因为G点是三角形重心, 是三角形三边中线的交点.
⑶ 初二数学下 平行四边形简单题
A不能形成一个三角形,平行四边形ABCD四舍五入绘画,连接AC和BD相交于O点,AO,BO,AB,形成一个三角形,AO
=
1/2AC,BO
=
1/2BD,因为的三角形的三条边小于两侧的总和,所以要满足AB是小于AO
+
BO,因为AB
=
10,所以AC
+
BD是大于20,只有D的选择,以满足
⑷ 初二数学 平行四边形
设EF和GH交与点O
容易证明GO=AB/2,HO=DC/2
又AB=DC,所以GO=HO
下面只要再证明EO=FO即可
GH平行于DC,H是BC的中点
所以B0=D0
AE⊥BD,CF⊥BD
所以角AEB=角CFD=90度
AB=DC
AB平行于DC,角ABE=角CDF
所以三角形AEB与三角形CFD全等
BE=DF
EO=BO-BE=DO-DF=FO
所以EF和GH互相平分
⑸ 初二下册数学知识点
初二下册数学主要学习二次公式、勾股定理、平行四边形、一次函数、数据的分析五个章节,涉及最简二次根式、同类二次根式、二次根式的性质及运算、勾股定理和逆定理、直角三角形的性质及判定、命题、定理、证明等知识点。
第十六章分式
一、定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。
二、分式基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
三、分式计算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒置后,与被除式相乘。
分式乘方:分式乘方要把分子、分母分别乘方。
四、整数指数幂:较小数的科学记数法;
五、分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。(这个解是增根,原方程无解)。
第十七章反比例函数
一、形如y=(k为常数,k≠0)的函数称为反比例函数;
二、反比例函数的图像属于双曲线;
三、性质:当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;
当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。
第十八章勾股定理
一、勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么
二、勾股定理逆定理:如果三角形三边长a,b,c满足,那么这个三角形是直角三角形。
三、经过证明被确认正确的命题叫做定理。
四、我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)
第十九章四边形
一、平行四边形:
1、定义:有两组对边分别平行的四边形叫做平行四边形。
2、性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分。
3、判定:
(1)两组对边分别相等的四边形是平行四边形;
(2)两组对角分别相等的四边形是平行四边形;
(3)对角线互相平分的四边形是平行四边形;
(4)一组对边平行且相等的四边形是平行四边形。
(5)有两组对边分别平行的四边形叫做平行四边形。(定义)
4、三角形的中位线平行于三角形的第三边,且等于第三边的一半。
二、矩形:
1、定义:有一个角是直角的平行四边形叫做矩形。
2、性质:矩形的四个角都是直角;矩形的对角线平分且相等。
3、判定:
(1)有一个角是直角的平行四边形叫做矩形。(定义)
(2)对角线相等的平行四边形是矩形。
(3)有三个角是直角的四边形是矩形。
4、直角三角形斜边上的中线等于斜边的一半。
三、菱形:
1、定义:一组邻边相等的平行四边形是菱形
2、性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
3、判定:
(1)一组邻边相等的平行四边形是菱形。(定义)
(2)对角线互相垂直的平行四边形是菱形。
(3)四条边相等的四边形是菱形。
4、S菱形=底×高;S菱形=ab(a、b为两条对角线)。
四、正方形:
1、定义:有一组邻边相等的矩形是正方形。或有一个角是直角的菱形是正方形。
2、性质:四条边都相等,四个角都是直角;正方形既是矩形,又是菱形。
3、判定:(1)邻边相等的矩形是正方形。
(2)有一个角是直角的菱形是正方形。
五、梯形:
1、定义:一组对边平行,另一组对边不平行的四边形叫做梯形。
2、等腰梯形定义:两腰相等的梯形叫做等腰梯形。
性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。
判定:同一底上两个角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形。
3、梯形的中位线分别平行于上、下两底,且等于上、下两底和的一半。
六、重心:
1、线段的重心就是线段的中点。
2、平行四边形的重心是它的两条对角线的交点。
3、三角形的三条中线交于疑点,这一点就是三角形的重心。
七、数学活动(教材115页):
1、折纸多60°、30°、15°的角证明方法(重点30°角)
2、宽和长的比是(约为0.618)的矩形叫做黄金矩形。
第二十章数据的分析
一、加权平均数:计算公式(教材125页。)
二、中位数:将一组数据按照由小到大(大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
三、众数:一组数据中出现次数最多的数据就是这组数据的众数(mode)。
四、极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。
五、方差:
1、计算公式:(表示的平均数)
2、性质:方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
六、数据的收集与整理的步骤:
1、收集数据;2、整理数据;3、描述数据;4、分析数据;5、撰写调查报告。
⑹ 八年级数学平行四边形
⑺ 八年级数学下册平行四边形
本题主要考查矩形的性质,等边三角形,直角等腰三角形的性质,三角形ABO为等边三角形,△ABE为等腰直角形,所以AB=BO=BE,所以△BOE为等腰三角形,且角OBE为30度,所以角BOE=75度,角AOB=60度,所以角AOE为135度(60十75)
⑻ 八年级下,数学,平行四边形
因为ABCD是平行四边形,所以AB//CD,又因为AF垂直于CD,所以AF垂直于AB,即角BAF等于90度,而角EAF等于30度,所以角BAE等于60度,所以角ABE等于30度,故知AB=2AE=12cm。AE垂直于BC,而BC//AD,所以AE垂直于AD,即角EAD等于90度,由角EAF等于30度,知角FAD=60度,且角ADC=30度,所以AD=2AF=16cm,所以,平行四边形ABCD的周长为12+12+16+16=56cm。面积为BC*AE=96cm^2
⑼ 八年级下册数学第十八章平行四边形的所有定义性质概念判定方法
平行四边形的判定方法
1.两组对边分别平行的四边形是平行四边形(定义判定法);
平行四边形的判定
平行四边形的判定
2.一组对边平行且相等的四边形是平行四边形;
3.对角线互相平分的四边形是平行四边形;
4.两组对角分别相等的四边形是平行四边形;(例题3)
5.所有邻角(每一组邻角)都互补的四边形是平行四边形;
6.两组对边分别相等的四边形是平行四边形。
(1):平行四边形对边分别相等;
(2):平行四边形对边分别平行;
(3):平行四边形对角分别相等;
(4):平行四边形对角线互相平分;
(5):平行四边形邻角互补
这是性质
判定则为性质逆命题
⑽ 初二数学平行四边形知识点
定义:有两组对边分别平行的四边形是平行四边形。
表示:平行四边形用符号“□ ”来表示。
平行四边形性质:
平行四边形对边相等;平行四边形对角相等;平行四边形对角线互相平分
平行四边结论:
⑴连接平行四边形各边的中点所得图形是平行四边形。
⑵如果一个四边形的对角线互相平分,那么连接这个四边形的中点所得图形是平行四边形。
⑶平行四边形的对角相等,两邻角互补。
⑷过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
⑸平行四边形是中心对称图形,对称中心是两对角线的交点。
平行四边形的面积等于底和高的积,即S□ABCD=ah,其中a可以是平行四边形的任何一边,h必须是a边到其对边的距离,即对应的高。
平行四边形的判定:
两组对边分别平行的四边形是平行四边形
两组对角分别相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形
从对角线看:对角钱互相平分的四边形是平行四边形
从角看:两组对角分别相等的四边形是平行四边形。
若一条直线过平行四边形对角线的交点,则直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分平行四边形的面积。
特殊的平行四边形
1矩形:有一个角是直角的平行四边形叫做矩形,也说是长方形
矩形的性质:
矩形的四个角都是直角;矩形的对角线相等
矩形的对角线相等且互相平分。
特别提示:直角三角形斜边上的中线等于斜边的一半
矩形具有平行四边形的一切性质
矩形的判定方法
有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形
有三个角是直角的四边形是矩形
2菱形:有一组邻边相等的平行四边形叫做菱形(菱形是平行四边形:一组邻边相等)
性质:
菱形的四条边都相等
菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角。
菱形的判定方法:
一组邻边相等的平行四边形是菱形
对角线互相垂直平分的平行四边形是菱形
对角线互相垂直平分的四边形是菱形
四条边都相等的四边形是菱形
3正方形:
定义:四条边都相等,四个角都是直角的四边形是正方形。
性质:正方形既有矩形的性质,又有菱形的性质。
正方形是轴对称图形,其对称轴为对边中点所在的直线或对角线所在的直线,也是中心对称图形,对称中心为对角线的交点。