当前位置:首页 » 基础知识 » 高二数学知识点总结全
扩展阅读
同学聊聊天有什么意义 2025-01-10 20:21:56
牵手的歌词含义是什么 2025-01-10 19:59:21
艾弗森知识大全 2025-01-10 19:40:21

高二数学知识点总结全

发布时间: 2022-03-08 05:53:10

㈠ 谁能给我整个高中的数学知识点总结

本人亲身试验
如果LZ你是新高一,那就好办。
1.其实我觉得最重要的就是自信。不管你初中怎样,高中的数学是不一样的,初中很死很呆。如果只是按照初中的方法,学不好高中数学,至少不会拔尖。所以,给自己信心!这样才有动力啊。
2.有自信,那就拿出行动。在高一时,最好自学完大部分课程,不用钻得很深,把参考书的知识提纲看看,大致掌握。然后,看教科书(现在高考题蛮多技巧都是课本上的,比如放缩法的一个公式),把书上的练习做一做,做简单的,不需要很深。
3.在自学的同时,最最重要的是老师讲的课程,讲到哪里,你就要钻研到哪里。若是条件可以的话,可以跟个辅导班,我之前就是这么过来的,分享一家口碑不错的http://www.wpjj.cn/a/1.html,仅供参考。伴随着老师的步伐,在已经自学的基础上,开始做一些高考题,有些题一开始或许有些难度,或许有些知识点的技巧老师没讲到,但是,你要钻研,探寻知识的本质是什么。
4.笔记本,这个当初我没注意到,很是后悔。笔记本记什么,记你自己的技巧与老师的技巧(最好配上题),记错题(不要错一题写一题,把错误分类,每一类后写明自己错的原因)
5.如上所做,在高二,上课会很轻松,你只要学习技巧与思维,这时开始,一题多解的训练,一道题,尽可能想多一点方法,还可以与同学交流。
6.在高一,一开始学集合可能会很晕,这很正常,初中与高中的衔接是这样的,你一定要给自己信心,努力钻研,这个过渡期就很快度过的。
7.下面给出 我自己曾经遇到的问题。
a.立体几何(血的教训,记住啊),一开始学的是“综合法”(是什么你先不用管),很简单,

是简单的立体几何,在高二时,又会学到“坐标法”(这个基本是万能方法),坐标法,是万金油,但是,你要记住,千万不要用泛滥了。我在学习坐标法后,立体几何题都用坐标法,不用思考,提笔就算。最后,我发现我不会用综合法了......现在高考趋势于综合法,坐标法对付几年前高考题,很快。但是,坐标法最近不好用啊,甚至用不了。综合法,是思维,坐标法,是计算。
两者过关,万无一失。所以,建议你两种方法都练,但综合法为主,坐标法为辅。
b.圆锥曲线,通常是高考最后3题,较难,刚学不建议马上做高考题,基础一点要牢(一定,一定,切记切记).
c.导数, 通常较难,也是基础要牢,导数题,通常比较活,题海战术似乎没什么用(不要深陷其中),要掌握思维与技巧,才可能学好导数。
总结来说:自信(任何时候都要对自己说:我可以的),基础(一切之源,要牢),钻研(我曾经为了寻找一个规律,弄到凌晨3点),归纳(就是你的笔记本)
做到上面这几点,坚持3年,高考至少135,若是加一点竞赛思想,保140没问题.

㈡ 高二上学期数学知识点归纳有哪些

高二上学期数学知识点归纳有:

1、四种命题:原命题:若p则q;逆命题:若q则p;否命题:若p则q;逆否命题:若q则p。

2、注意命题的否定与否命题的区别:命题否定形式是;否命题是.命题“或”的否定是“且”;“且”的否定是“或”。

3、逻辑联结词:且(and):命题形式p q; p q p q p q p或(or):命题形式p q;真真真真假非(not):命题形式p .真假假真假。“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”。

4、充要条件:由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。

5、全称命题与特称命题:短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号表示。含有全体量词的命题,叫做全称命题。短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号表示,含有存在量词的命题,叫做存在性命题。

㈢ 高二上学期数学知识点梳理总结

单元知识总结

一、坐标法
1.点和坐标
建立了平面直角坐标系后,坐标平面上的点和一对有序实数(x,y)建立了一一对应的关系.
2.两点间的距离公式
设两点的坐标为P1(x1,y1),P2(x2,y2),则两点间的距离

特殊位置的两点间的距离,可用坐标差的绝对值表示:
(1)当x1=x2时(两点在y轴上或两点连线平行于y轴),则
|P1P2|=|y2-y1|
(2)当y1=y2时(两点在x轴上或两点连线平行于x轴),则
|P1P2|=|x2-x1|
3.线段的定比分点

(2)公式:分P1(x1,y2)和P2(x2,y2)连线所成的比为λ的分点坐标是

公式

二、直线
1.直线的倾斜角和斜率
(1)当直线和x轴相交时,把x轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角,叫做这条直线的倾斜角.
当直线和x轴平行线重合时,规定直线的倾斜角为0.
所以直线的倾斜角α∈[0,π).
(2)倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜

∴当k≥0时,α=arctank.(锐角)
当k<0时,α=π-arctank.(钝角)
(3)斜率公式:经过两点P1(x1,y1)、P2(x2,y2)的直线的斜率为

2.直线的方程
(1)点斜式 已知直线过点(x0,y0),斜率为k,则其方程为:y-y0=k(x-x0)
(2)斜截式 已知直线在y轴上的截距为b,斜率为k,则其方程为:y=kx+b
(3)两点式 已知直线过两点(x1,y1)和(x2,y2),则其方程为:

(4)截距式 已知直线在x,y轴上截距分别为a、b,则其方程为:

(5)参数式 已知直线过点P(x0,y0),它的一个方向向量是(a,b),

v(cosα,sinα)(α为倾斜角)时,则其参数式方程为

(6)一般式 Ax+By+C=0 (A、B不同时为0).
(7)特殊的直线方程
①垂直于x轴且截距为a的直线方程是x=a,y轴的方程是x=0.
②垂直于y轴且截距为b的直线方程是y=b,x轴的方程是y=0.
3.两条直线的位置关系
(1)平行:当直线l1和l2有斜截式方程时,k1=k2且b1≠b2.

(2)重合:当l1和l2有斜截式方程时,k1=k2且b1=b2,当l1和l2是

(3)相交:当l1,l2是斜截式方程时,k1≠k2

4.点P(x0,y0)与直线l:Ax+By+C=0的位置关系:

5.两条平行直线l1∶Ax+By+C1=0,l2∶Ax+By+C2=0间

6.直线系方程
具有某一共同属性的一类直线的集合称为直线系,它的方程的特点是除含坐标变量x,y以外,还含有特定的系数(也称参变量).
确定一条直线需要两个独立的条件,在求直线方程的过程中往往先根据一个条件写出所求直线所在的直线系方程,然后再根据另一个条件来确定其中的参变量.
(1)共点直线系方程:
经过两直线l1∶A1x+B1y+C1=0,l2∶A2x+B2y+C2=0的交点的直线系方程为:A1x+B1y+C1+λ(A2x+B2y+C2)=0,其中λ是待定的系数.
在这个方程中,无论λ取什么实数,都得不到A2x+B2y+C2=0,因此它不表示l2.当λ=0时,即得A1x+B1y+C1=0,此时表示l1.
(2)平行直线系方程:直线y=kx+b中当斜率k一定而b变动时,表示平行直线系方程.与直线Ax+By+C=0平行的直线系方程是Ax+By+λ=0(λ≠C),λ是参变量.
(3)垂直直线系方程:与直线Ax+By+C=0(A≠0,B≠0)垂直的直线系方程是:Bx-Ay+λ=0.
如果在求直线方程的问题中,有一个已知条件,另一个条件待定时,可选用直线系方程来求解.
7.简单的线性规划
(1)二元一次不等式Ax+By+C>0(或<0)表示直线Ax+By+C=0某一侧所有点组成的平面区域.
二元一次不等式组所表示的平面区域是各个不等式所表示的平面点集的交集,即各个不等式所表示的平面区域的公共部分.
(2)线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,称为线性规划问题,
例如,z=ax+by,其中x,y满足下列条件:

求z的最大值和最小值,这就是线性规划问题,不等式组(*)是一组对变量x、y的线性约束条件,z=ax+by叫做线性目标函数.满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域,使线性目标函数取得最大值和最小值的可行解叫做最优解.
三、曲线和方程
1.定义
在选定的直角坐标系下,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下关系:
(1)曲线C上的点的坐标都是方程f(x,y)=0的解(一点不杂);
(2)以方程f(x,y)=0的解为坐标的点都是曲线C上的点(一点不漏).
这时称方程f(x,y)=0为曲线C的方程;曲线C为方程f(x,y)=0的曲线(图形).
设P={具有某种性质(或适合某种条件)的点},Q={(x,y)|f(x,y)=0},若设点M的坐标为(x0,y0),则用集合的观点,上述定义中的两条可以表述为:

以上两条还可以转化为它们的等价命题(逆否命题):

为曲线C的方程;曲线C为方程f(x,y)=0的曲线(图形).
2.曲线方程的两个基本问题
(1)由曲线(图形)求方程的步骤:
①建系,设点:建立适当的坐标系,用变数对(x,y)表示曲线上任意一点M的坐标;
②立式:写出适合条件p的点M的集合p={M|p(M)};
③代换:用坐标表示条件p(M),列出方程f(x,y)=0;
④化简:化方程f(x,y)=0为最简形式;
⑤证明:以方程的解为坐标的点都是曲线上的点.
上述方法简称“五步法”,在步骤④中若化简过程是同解变形过程;或最简方程的解集与原始方程的解集相同,则步骤⑤可省略不写,因为此时所求得的最简方程就是所求曲线的方程.
(2)由方程画曲线(图形)的步骤:
①讨论曲线的对称性(关于x轴、y轴和原点);
②求截距:

③讨论曲线的范围;
④列表、描点、画线.
3.交点
求两曲线的交点,就是解这两条曲线方程组成的方程组.
4.曲线系方程
过两曲线f1(x,y)=0和f2(x,y)=0的交点的曲线系方程是f1(x,y)+λf2(x,y)=0(λ∈R).
四、圆
1.圆的定义
平面内与定点距离等于定长的点的集合(轨迹)叫圆.
2.圆的方程
(1)标准方程(x-a)2+(y-b)2=r2.(a,b)为圆心,r为半径.
特别地:当圆心为(0,0)时,方程为x2+y2=r2
(2)一般方程x2+y2+Dx+Ey+F=0

当D2+E2-4F<0时,方程无实数解,无轨迹.
(3)参数方程 以(a,b)为圆心,以r为半径的圆的参数方程为

特别地,以(0,0)为圆心,以r为半径的圆的参数方程为

3.点与圆的位置关系
设点到圆心的距离为d,圆的半径为r.

4.直线与圆的位置关系
设直线l:Ax+By+C=0和圆C:(x-a)2+(y-b)2=r2,则

5.求圆的切线方法
(1)已知圆x2+y2+Dx+Ey+F=0.
①若已知切点(x0,y0)在圆上,则切线只有一条,其方程是

过两个切点的切点弦方程.
②若已知切线过圆外一点(x0,y0),则设切线方程为y-y0=k(x-x0),再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线.
③若已知切线斜率为k,则设切线方程为y=kx+b,再利用相切条件求b,这时必有两条切线.
(2)已知圆x2+y2=r2.
①若已知切点P0(x0,y0)在圆上,则该圆过P0点的切线方程为x0x+y0y=r2.

6.圆与圆的位置关系
已知两圆圆心分别为O1、O2,半径分别为r1、r2,则

单元知识总结

一、圆锥曲线
1.椭圆
(1)定义
定义1:平面内一个动点到两个定点F1、F2的距离之和等于常数(大于|F1F2|),这个动点的轨迹叫椭圆(这两个定点叫焦点).
定义2:点M与一个定点的距离和它到一条定直线的距离的比是常

(2)图形和标准方程

(3)几何性质

2.双曲线
(1)定义
定义1:平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线(这两个定点叫双曲线的焦点).
定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e>1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点).
(2)图形和标准方程

图8-3的标准方程为:

图8-4的标准方程为:

(3)几何性质

3.抛物线
(1)定义
平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.
(2)抛物线的标准方程,类型及几何性质,见下表:

①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离.
②p的几何意义:焦点F到准线l的距离.

焦点弦长公式:|AB|=p+x1+x2
4.圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义
与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e表示,当0<e<1时,是椭圆,当e>1时,是双曲线,当e=1时,是抛物线.
二、利用平移化简二元二次方程
1.定义
缺xy项的二元二次方程Ax2+Cy2+Dx+Ey+F=0(A、C不同时为0)※,通过配方和平移,化为圆型或椭圆型或双曲线型或抛物线型方程的标准形式的过程,称为利用平移化简二元二次方程.
A=C是方程※为圆的方程的必要条件.
A与C同号是方程※为椭圆的方程的必要条件.
A与C异号是方程※为双曲线的方程的必要条件.
A与C中仅有一个为0是方程※为抛物线方程的必要条件.
2.对于缺xy项的二元二次方程:
Ax2+Cy2+Dx+Ey+F=0(A,C不同时为0)利用平移变换,可把圆锥曲线的一般方程化为标准方程,其方法有:①待定系数法;②配方法.

中心O′(h,k)

中心O′(h,k)
抛物线:对称轴平行于x轴的抛物线方程为
(y-k)2=2p(x-h)或(y-k)2=-2p(x-h),
顶点O′(h,k).
对称轴平行于y轴的抛物线方程为:(x-h)2=2p(y-k)或(x-h)2=-2p(y-k)
顶点O′(h,k).
以上方程对应的曲线按向量a=(-h,-k)平移,就可将其方程化为圆锥曲线的标准方程的形式.

㈣ 上海 高二 数学 知识点总结

高二数学期末复习知识点总结

一、直线与圆:

1、直线的倾斜角 的范围是

在平面直角坐标系中,对于一条与 轴相交的直线 ,如果把 轴绕着交点按逆时针方向转到和直线 重合时所转的最小正角记为 , 就叫做直线的倾斜角。当直线 与 轴重合或平行时,规定倾斜角为0;

两条平行线 与 的距离是

2、圆的标准方程: .⑵圆的一般方程:

注意能将标准方程化为一般方程

3、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与 轴垂直的直线.

4、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.

过两点(x1,y1),(x2,y2)的直线的斜率k=( y2-y1)/(x2-x1),另外切线的斜率用求导的方法。

5、点 到直线 的距离公式 ;

6、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.① 相离② 相切③ 相交

7、直线方程:⑴点斜式:直线过点 斜率为 ,则直线方程为 ,

⑵斜截式:直线在 轴上的截距为 和斜率 ,则直线方程为

8、 , ,① ∥ , ; ② .

直线 与直线 的位置关系:

(1)平行 A1/A2=B1/B2 注意检验 (2)垂直 A1A2+B1B2=0

9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形) 直线与圆相交所得弦长

二、圆锥曲线方程:

1、椭圆: ①方程 (a>b>0)注意还有一个;②定义: |PF1|+|PF2|=2a>2c; ③ e= ④长轴长为2a,短轴长为2b,焦距为2c; a2=b2+c2 ;

2、抛物线 :①方程y2=2px注意还有三个,能区别开口方向; ②定义:|PF|=d焦点F( ,0),准线x=- ;③焦半径 ; 焦点弦 =x1+x2+p;

3、双曲线:①方程 (a,b>0) 注意还有一个;②定义: ||PF1|-|PF2||=2a<2c; ③e= ;④实轴长为2a,虚轴长为2b,焦距为2c; 渐进线 或 c2=a2+b2

4、直线被圆锥曲线截得的弦长公式:

5、注意解析几何与向量结合问题:
没别的了

㈤ 高中数学所有知识点归纳

高中数学基础知识梳理(数学小飞侠)

链接:

提取码:9bdp复制这段内容后打开网络网盘手机App,操作更方便哦

若资源有问题,欢迎追问~

㈥ 求高一到高二数学所以知识点总结和例题+解题技巧

我有整套的高一高二的知识点笔记,有公式推导和例题。需要的话,联系我。200元/个笔记本。

㈦ 高中数学知识点总结

《高中数学基础知识梳理(数学小飞侠)》网络网盘免费下载

链接:

提取码: i8i2

资源目录

01.集合例题讲解.mp4

01.集合进阶.mp4

02函数的值域.mp4

03函数的定义域与解析式.mp4

04函数的单调性.mp4

04函数的奇偶性.mp4

05指数运算与指数函数.mp4

07对数运算与对数函数.mp4

08幂函数突破.mp4

09函数零点专题.mp4

10含参二次函数与不等式专题.mp4

11二次函数根的分布专题.mp4

12空间几何体.mp4

13点线面位置关系进阶.mp4

14平行关系突破.mp4

15垂直关系突破.mp4

16空间几何关系综合.mp4

17直线方程突破.mp4

18圆的方程突破.mp4

19算法初步.mp4

20算法语句与算法案例.mp4

21数据的收集与频率分布.mp4

22常用统计量与相关关系.mp4

23古典概型概率.mp4

24几何概型概率.mp4

25任意角重难点.mp4

26三角函数定义与诱导公式.mp4

27三角函数图像及性质.mp4

28平面向量几何运算.mp4

29平面向量代数运算.mp4

30.三角恒等变换.mp4

31.三角函数计算专题.mp4

32.正弦定理与余弦定理.mp4

33.等差数列突破.mp4

34.等比数列突破.mp4

35.数列通项公式专题 .mp4

36.数列求和公式专题 .mp4

37.二次不等式与分式不等式.mp4

38.线性规划问题.mp4

39.基本不等式突破.mp4

40.逻辑用语专题.mp4

41.椭圆方程及其几何性质.mp4

42.双曲线方程及其性质.mp4

43.抛物线方程及其性质.mp4

44.直线与圆锥曲线综合.mp4

45.空间向量突破.mp4

46.导数的计算专题.mp4

47.导数的应用.mp4

48.导数的应用(二).mp4

49.定积分与微积分.mp4

50.复数专题.mp4

51.排列组合.mp4

52.二项式定理.mp4

53.随机变量及其变量.mp4

54回归分析与独立性检验.mp4

资源目录

01.集合例题讲解.mp4

01.集合进阶.mp4

02函数的值域.mp4

03函数的定义域与解析式.mp4

04函数的单调性.mp4

04函数的奇偶性.mp4

05指数运算与指数函数.mp4

07对数运算与对数函数.mp4

08幂函数突破.mp4

09函数零点专题.mp4

10含参二次函数与不等式专题.mp4

11二次函数根的分布专题.mp4

12空间几何体.mp4

13点线面位置关系进阶.mp4

14平行关系突破.mp4

15垂直关系突破.mp4

16空间几何关系综合.mp4

17直线方程突破.mp4

18圆的方程突破.mp4

19算法初步.mp4

20算法语句与算法案例.mp4

21数据的收集与频率分布.mp4

22常用统计量与相关关系.mp4

23古典概型概率.mp4

24几何概型概率.mp4

25任意角重难点.mp4

26三角函数定义与诱导公式.mp4

27三角函数图像及性质.mp4

28平面向量几何运算.mp4

29平面向量代数运算.mp4

30.三角恒等变换.mp4

31.三角函数计算专题.mp4

32.正弦定理与余弦定理.mp4

33.等差数列突破.mp4

34.等比数列突破.mp4

35.数列通项公式专题 .mp4

36.数列求和公式专题 .mp4

37.二次不等式与分式不等式.mp4

38.线性规划问题.mp4

39.基本不等式突破.mp4

40.逻辑用语专题.mp4

41.椭圆方程及其几何性质.mp4

42.双曲线方程及其性质.mp4

43.抛物线方程及其性质.mp4

44.直线与圆锥曲线综合.mp4

45.空间向量突破.mp4

46.导数的计算专题.mp4

47.导数的应用.mp4

48.导数的应用(二).mp4

49.定积分与微积分.mp4

50.复数专题.mp4

51.排列组合.mp4

52.二项式定理.mp4

53.随机变量及其变量.mp4

54回归分析与独立性检验.mp4

㈧ 高二数学知识点有哪些

1、函数模型及其应用:利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

2、在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。

3、理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。

4、根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。

5、能根据斜率判定两条直线平行或垂直。

㈨ 高二数学重点知识归纳有哪些

高二数学重点知识归纳如下:

一、复合函数定义域

若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f的定义域是D={x|x∈A,且g(x)∈B}综合考虑各部分的x的取值范围,取他们的交集。

求函数的定义域主要应考虑以下几点:

⑴当为整式或奇次根式时,R的值域。

⑵当为偶次根式时,被开方数不小于0(即≥0)。

⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0。

⑷当为指数式时,对零指数幂或负整数指数幂,底不为0。

⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。

⑹分段函数的定义域是各段上自变量的取值集合的并集。

⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求。

⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。

⑼对数函数的真数必须大于零,底数大于零且不等于1。

二、复合函数常见题型

(ⅰ)已知f(x)定义域为A,求f的定义域:实质是已知g(x)的范围为A,以此求出x的范围。

(ⅱ)已知f定义域为B,求f(x)的定义域:实质是已知x的范围为B,以此求出g(x)的范围。

(ⅲ)已知f定义域为C,求f的定义域:实质是已知x的范围为C,以此先求出g(x)的范围(即f(x)的定义域);然后将其作为h(x)的范围,以此再求出x的范围。

㈩ 高二数学知识点及公式是什么

高二数学知识点及公式是如下:

一、复合函数定义域

若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f的定义域是D={x|x∈A,且g(x)∈B}综合考虑各部分的x的取值范围,取他们的交集。

求函数的定义域主要应考虑以下几点:

⑴当为整式或奇次根式时,R的值域。

⑵当为偶次根式时,被开方数不小于0(即≥0)。

⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0。

⑷当为指数式时,对零指数幂或负整数指数幂,底不为0。

⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。

⑹分段函数的定义域是各段上自变量的取值集合的并集。

⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求。

⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。

⑼对数函数的真数必须大于零,底数大于零且不等于1。

二、复合函数常见题型

(ⅰ)已知f(x)定义域为A,求f的定义域:实质是已知g(x)的范围为A,以此求出x的范围。

(ⅱ)已知f定义域为B,求f(x)的定义域:实质是已知x的范围为B,以此求出g(x)的范围。

(ⅲ)已知f定义域为C,求f的定义域:实质是已知x的范围为C,以此先求出g(x)的范围(即f(x)的定义域);然后将其作为h(x)的范围,以此再求出x的范围。