Ⅰ 数学中考知识点归纳有哪些
数学中考知识点如下:
1、绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
2、求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。其中,a叫做底数,n叫做指数。当a看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。
3、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
4、在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
5、除法的估算方法是多样的,通常我们将被除数(三位数)看成一个接近它的整百整十数,除数(一位数)不变,然后计算。或者按照乘法口诀把被除数估成一个合适的数,再计算。
Ⅱ 初中数学知识点有哪些
初中数学知识点有:
1、平行线的两条判定定理
(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
2、利用绝对值比较大小
(1)两个正数比较:绝对值大的那个数大;
(2)两个负数比较:先算出它们的绝对值,绝对值大的反而小。
3、圆的基本性质
(1)半圆或直径所对的圆周角是直角。
(2)任意一个三角形一定有一个外接圆。
(3)在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
4、全等三角形的判定
(1)边边边公理:三边对应相等的两个三角形全等(“边边边”或“SSS”)。
(2)边角公理:两边和它们的夹角对应相等的两个三角形全等(“边角边”或“SAS”)。
(3)角边角公理:两个角和它们的夹边分别对应相等的两个三角形全等(“角边角”或“ASA”)。
5、一次函数
形如y=kx+b(k、b是常数,且k≠0)的函数,叫做一次函数。特别地,当b=0时,y是x的正比例函数。即:y=kx(k为常数,k≠0)。所以,正比例函数是特殊的一次函数。
Ⅲ 小学数学知识点有哪些
小学数学知识点归纳:数学概念。
1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×5。
简便乘法:被乘数、乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
Ⅳ 三到六年级数学知识点归纳有哪些
三到六年级数学知识点归纳有如下:
一、倍数与约数
最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。
二、利润
利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)。
利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
三、小数
自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414。
四、分数的倒数
找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。 则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。
五、圆周率:圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。
Ⅳ 中考数学必考知识点有哪些
中考数学必考知识点如下:
1、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
2、圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
3、平行四边形的定义和相关概念,平行四边形的性质,平行四边形的对角线的性质,两条平行线距离。
4、平行四边形的判定定理,平行四边形的性质与判定的综合运用,三角形的中位线定理。
5、矩形的性质和判定,直角三角形斜边上中线,菱形的性质和判定定理,正方形的性质和判定。
Ⅵ 初一数学知识点有哪些
初一数学知识点如下:
1、0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数。
2、绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
3、在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成 的形式。
4、有理数中1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。
5、数轴的作用:所有的有理数都可以用数轴上的点来表达。
Ⅶ 高中数学知识点有哪些
高中数学是全国高中生学习的一门学科。包括《集合与函数》《三角函数》《不等式》《数列》《立体几何》《平面解析几何》等部分, 高中数学主要分为代数和几何两大部分。代数主要是一次函数,二次函数,反比例函数和三角函数。几何又分为平面解析几何和立体几何两大部分。
平面解析几何初步:
(1)直线与方程
①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。
②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。
③能根据斜率判定两条直线平行或垂直。
④根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。
⑤能用解方程组的方法求两直线的交点坐标。
⑥探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
(2)圆与方程
①回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程。
②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系。
③能用直线和圆的方程解决一些简单的问题。
(3)在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想。
(4)空间直角坐标系
①通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置。
②通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。
Ⅷ 1—6年级数学知识点有哪些
举例如下:
1、整数【正数、0、负数】
⑴一个物体也没有,用0表示。0和1、2、3……都是自然数。自然数是整数。
⑵最小的一位数是1,最小的自然数是0。
⑶零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。“+4”读作正四。“-4”读作负四。 +4也可以写成4。
⑷像 +4、19、+8844这样的数都是正数。像-4、-11、-7、-155这样的数都是负数。
⑸0既不是正数,也不是负数。正数都大于0,负数都小于0。
⑹通常情况下,比海平面高用正数表示,比海平面低用负数表示。
⑺通常情况下,盈利用正数表示,亏损用负数表示。
⑻通常情况下,上车人数用正数表示,下车人数用负数表示。
⑼通常情况下,收入用正数表示,支出用负数表示。
⑽通常情况下,上升用正数表示,下降用负数表示。
2、小数【有限小数、无限小数】
⑴分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
⑵整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。每相邻两个计数单位间的进率都是10。
⑶每个计数单位所占的位置,叫做数位。数位是按照一定的顺序排列的。
⑷小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
⑸根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
⑹比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。
⑺把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。
⑻求小数近似数的一般方法:
①先要弄清保留几位小数;
②根据需要确定看哪一位上的数;3用“四舍五入”的方法求得结果。
3、分数【真分数、假分数】
⑴把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,是这个分数的分数单位。
⑵两个数相除,它们的商可以用分数表示。即:a÷b=a/b(b≠0)。
⑶小数和分数的意义可以看出,小数实际上就是分母是10、100、1000…的分数。
⑷分数可以分为真分数和假分数。
⑸分子小于分母的分数叫做真分数。真分数小于1。
⑹分子大于或等于分母的分数叫做假分数。假分数大于或等于1。
⑺分子和分母只有公因数1的分数叫做最简分数。
⑻分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
⑼小数的性质和分数的基本性质一致的,应用分数的基本性质,可以通分和约分。
4、百分数【税率、利息、折扣、成数】
表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫百分率或百分比,百分数通常用“%”表示。