Ⅰ 跟光有关的科学知识有哪些
有关光的物理知识:
1、光在同种均匀介质中沿直线传播,光在真空中的速度c=3x10^8m/s
2、光的反射、折射、平面镜成像、凸透镜、凹透镜及成像规律、凸面镜、凹面镜。
3、光的干涉、衍射、偏振现象,光电效应,光的波粒二象性。
Ⅱ 关于“光”的知识
光是电磁波,可见光是波长为400-700纳米的电磁波。小于400纳米的电磁波为紫外线,如X-射线;大于700纳米的电磁波为红外线,如微波、广播无线电波。波长单位为纳米,
什么是光
我们一直在争论“光”是属于波还是粒子,甚至以古典力学闻名世界的牛顿也讨论过这个问题。物理学此后发展到了量子论(1900年)、量子力学,然后爱因斯坦于1904年发表了相対论,对光的定义做出了全新的解释:光既是一种波,同时又是一种粒子。也就是说,一直争论不休的双方都没有错。
光是电磁波的一种,也是能源的一种表现形式。它在真空中的传播速度达到每秒钟30万公里,没有任何物质的速度会超过光——也有人说尚不能绝对的这样说。黑白摄影时,我们通常使用红色或绿色的滤镜,它的原理是用滤镜吸收与它自身颜色不同的光线,并把吸收的光能转换为热能释放出来。使用滤镜时常常感到它在发热就是因为这个道理。对于电磁波,人类的眼睛可以识别的称为可视光,就是平常我们称作的“光”。光本身是看不到的,我们只有注视光源和依靠反射物才能够感觉它。有些昆虫使用紫外线识别对象,蝮蛇则通过红外线识别,而狗、牛、猫和马都不能识别色彩。
光的种类
光源可以分为三种。
第一种是热效应产生的光,太阳光就是很好的例子,此外蜡烛等物品也都一样,此类光随着温度的变化会改变颜色。
第二种是原子发光,荧光灯灯管内壁涂抹的荧光物质被电磁波能量激发而产生光,此外霓虹灯的原理也是一样。原子发光具有独自的基本色彩,所以彩色拍摄时我们需要进行相应的补正。
第三种是synchrotron发光,同时携带有强大的能量,原子炉发的光就是这种,但是我们在日常生活中几乎没有接触到这种光的机会,所以记住前两种就足够了。
光的印象
光是直线前进的,碰到东西时它会反射,如果是透明物体还会透过去,根据物质的密度还会有曲折现象发生——这就是镜头的原理。另外,光在遇到半透过物质(比如柔光板)是还有散射现象,就是失去了平行性,往任何一个方向散射开,我们看到的结果是光在传播过程中强度减小了。反过来,如果光一直保持不散开的状态就可以传播的很远。我们知道激光就有这样的特性,而身边最常见的例子是探照灯,我们会在后面讲到。具体拍摄时所使用的有散光、直射光或者两者的混合光,知道这些区别,拍摄写真会有很大的帮助。
直射光和反射光
散光是指散乱的光线,想想一下午后透过窗帘传播到室内的阳光,就会有个大致的印象。散光分为两种,一种是由透过光形成,另一种由反射光形成的(实际拍摄中,我们利用柔光板得到散光,反射光则是由反光板反光而来的)。
如果让太阳光透过柔光板,光线被柔光纸作用散射向四处。这时处在附近的被拍摄体暗部光线被加强,同时高光部的光线被减弱,拍摄出来的照片就会显得非常柔和。此时主光源就是柔光板——正确的说应该是柔光板被阳光照射的部分。如果这时整个柔光板是边长为10米的正方形,而被光照射的部分是1平方米的正方形,那么主光源的大小应该是这边长为1米的范围。
当模特接近柔光板时,主光源相对变大,散光效果会较先前更加明亮。此外,使用白纸和白布的效果也是一样。散光,就是把光线的平行性打乱的方法,因此散光的环境下很难出现明显得阴影部分,阴影的轮廓线将很模糊,甚至看不到。而希望得到清晰的阴影边线是,通常是使用直射光。
下面来讨论一下直射光,可以想象一下太阳光直接照射到人物脸部时候的情形。与四周的反射光相比较,此时的太阳光非常强烈,明暗的差别也相当大,给人的印象是分明、极富对比性。我们从复数的物体阴影开始,向造成阴影的物体的相对点画直线,直线延长后会相交于一处,光源就存在于交叉点上,交叉点的数目和光源的数目应该是等同。太阳和月亮的光是平行的(我们几乎无法用物理手段证明它不是平行),所以不会产生交点。这一现象可以用几何学得到证明。
对比度
对比度是指明暗的差异,简单说就是高光部和阴影部之间的光量差。我们说的对比度强烈,所指的就是高光部和阴影部之间的光量差很大;对比度小,则刚刚相反。
如此可以得知,用散光拍摄的照片,在其他条件相同的情况之下,对比度应该相对的低一些——给人的印象是光线非常光滑、柔软,烘托出一种华贵的氛围。但是这种照片由于对比度不够,可能会显得层次不够分明。另一方面,光亮差小的好处是有助于彩色胶片再现各种颜色。
和散光相反,直射光下拍摄的图像给人以鲜明的感觉,如果明暗的比例适中,还可以起到强调被拍摄物立体感的作用。同时照片中影像的边缘看起来比较分明。这种光线很难正确显示被拍摄物的色彩。
散光比较适合日本画,尤其是那些强调表现微妙的色彩差异、情绪性、主观性的画面。直射光适合于西方绘画,或者是希望给人客观性印象的时候。在印刷方面,直射光适合于黑白,散光适合于彩色方面。我们会在以后继续加以介绍。
望远镜头和散光的组合,比较适合于日本画以及装饰性的拍摄;直射光和望远镜头的组合适合于表现强有力的影像——比如运动场面。广角镜头加直射光的组合非常具有客观性,给人以西方的印象;散光和广角镜头的组合位于中间,最是难以控制。东洋绘画技法中本来就没有光和阴影的概念。
有时遇到物理性的名词可以去查查现代汉语词典的,如果说根本不知道的话也是可以先去看看文字上的解释.(参见<现代汉语词典>修订本第468页)
光:通常指照在物体上,使人能看见物体的那种物质,如太阳光,灯光,月光等.可见光是波长0.77-0.39微米的电磁波.此外还包括看不见的红外光和紫外光.因为光是电磁波的一种,所以也叫光波;在一般情况下光沿着直线传播,所以也叫光线.
光的知识
狭义来说,光学是关于光和视见的科学,optics(光学)这个词,早期只用于跟眼睛和视见相联系的事物。而今天,常说的光学是广义的,是研究从微波、红外线、可见光、紫外线直到 X射线的宽广波段范围内的,关于电磁辐射的发生、传播、接收和显示,以及跟物质相互作用的科学。
光学的发展简史
光学是一门有悠久历史的学科,它的发展史可追溯到2000多年前。
人类对光的研究,最初主要是试图回答“人怎么能看见周围的物体?”之类问题。约在公元前400多年(先秦的代),中国的《墨经》中记录了世界上最早的光学知识。它有八条关光学的记载,叙述影的定义和生成,光的直线传播性和针孔成像,并且以严谨的文字讨论了在平面镜、凹球面镜和凸球面镜中物和像的关系。
自《墨经)开始,公元11世纪阿拉伯人伊本?海赛木发明透镜;公元1590年到17世纪初,詹森和李普希同时独立地发明显微镜;一直到17世纪上半叶,才由斯涅耳和笛卡儿将光的反射和折射的观察结果,归结为今天大家所惯用的反射定律和折射定律。
1665年,牛顿进行太阳光的实验,它把太阳光分解成简单的组成部分,这些成分形成一个颜色按一定顺序排列的光分布——光谱。它使人们第一次接触到光的客观的和定量的特征,各单色光在空间上的分离是由光的本性决定的。
牛顿还发现了把曲率半径很大的凸透镜放在光学平玻璃板上,当用白光照射时,则见透镜与玻璃平板接触处出现一组彩色的同心环状条纹;当用某一单色光照射时,则出现一组明暗相间的同心环条纹,后人把这种现象称牛顿环。借助这种现象可以用第一暗环的空气隙的厚度来定量地表征相应的单色光。
牛顿在发现这些重要现象的同时,根据光的直线传播性,认为光是一种微粒流。微粒从光源飞出来,在均匀媒质内遵从力学定律作等速直线运动。牛顿用这种观点对折射和反射现象作了解释。
惠更斯是光的微粒说的反对者,他创立了光的波动说。提出“光同声一样,是以球形波面传播的”。并且指出光振动所达到的每一点,都可视为次波的振动中心、次波的包络面为传播波的波阵面(波前)。在整个18世纪中,光的微粒流理论和光的波动理论都被粗略地提了出来,但都不很完整。
19世纪初,波动光学初步形成,其中托马斯?杨圆满地解释了“薄膜颜色”和双狭缝干涉现象。菲涅耳于1818年以杨氏干涉原理补充了惠更斯原理,由此形成了今天为人们所熟知的惠更斯-菲涅耳原理,用它可圆满地解释光的干涉和衍射现象,也能解释光的直线传播。
在进一步的研究中,观察到了光的偏振和偏振光的干涉。为了解释这些现象,菲涅耳假定光是一种在连续媒质(以太)中传播的横波。为说明光在各不同媒质中的不同速度,又必须假定以太的特性在不同的物质中是不同的;在各向异性媒质中还需要有更复杂的假设。此外,还必须给以太以更特殊的性质才能解释光不是纵波。如此性质的以太是难以想象的。
1846年,法拉第发现了光的振动面在磁场中发生旋转;1856年,韦伯发现光在真空中的速度等于电流强度的电磁单位与静电单位的比值。他们的发现表明光学现象与磁学、电学现象间有一定的内在关系。
1860年前后,麦克斯韦的指出,电场和磁场的改变,不能局限于空间的某一部分,而是以等于电流的电磁单位与静电单位的比值的速度传播着,光就是这样一种电磁现象。这个结论在1888年为赫兹的实验证实。
然而,这样的理论还不能说明能产生象光这样高的频率的电振子的性质,也不能解释光的色散现象。到了1896年洛伦兹创立电子论,才解释了发光和物质吸收光的现象,也解释了光在物质中传播的各种特点,包括对色散现象的解释。在洛伦兹的理论中,以太乃是广袤无限的不动的媒质,其唯一特点是,在这种媒质中光振动具有一定的传播速度。
对于像炽热的黑体的辐射中能量按波长分布这样重要的问题,洛伦兹理论还不能给出令人满意的解释。并且,如果认为洛伦兹关于以太的概念是正确的话,则可将不动的以太选作参照系,使人们能区别出绝对运动。而事实上,1887年迈克耳逊用干涉仪测“以太风”,得到否定的结果,这表明到了洛伦兹电子论时期,人们对光的本性的认识仍然有不少片面性。
1900年,普朗克从物质的分子结构理论中借用不连续性的概念,提出了辐射的量子论。他认为各种频率的电磁波,包括光,只能以各自确定分量的能量从振子射出,这种能量微粒称为量子,光的量子称为光子。
量子论不仅很自然地解释了灼热体辐射能量按波长分布的规律,而且以全新的方式提出了光与物质相互作用的整个问题。量子论不但给光学,也给整个物理学提供了新的概念,所以通常把它的诞生视为近代物理学的起点。
1905年,爱因斯坦运用量子论解释了光电效应。他给光子作了十分明确的表示,特别指出光与物质相互作用时,光也是以光子为最小单位进行的。
1905年9月,德国《物理学年鉴》发表了爱因斯坦的“关于运动媒质的电动力学”一文。第一次提出了狭义相对论基本原理,文中指出,从伽利略和牛顿时代以来占统治地位的古典物理学,其应用范围只限于速度远远小于光速的情况,而他的新理论可解释与很大运动速度有关的过程的特征,根本放弃了以太的概念,圆满地解释了运动物体的光学现象。
这样,在20世纪初,一方面从光的干涉、衍射、偏振以及运动物体的光学现象确证了光是电磁波;而另一方面又从热辐射、光电效应、光压以及光的化学作用等无可怀疑地证明了光的量子性——微粒性。
1922年发现的康普顿效应,1928年发现的喇曼效应,以及当时已能从实验上获得的原子光谱的超精细结构,它们都表明光学的发展是与量子物理紧密相关的。光学的发展历史表明,现代物理学中的两个最重要的基础理论——量子力学和狭义相对论都是在关于光的研究中诞生和发展的。
此后,光学开始进入了一个新的时期,以致于成为现代物理学和现代科学技术前沿的重要组成部分。其中最重要的成就,就是发现了爱因斯坦于1916年预言过的原子和分子的受激辐射,并且创造了许多具体的产生受激辐射的技术。
爱因斯坦研究辐射时指出,在一定条件下,如果能使受激辐射继续去激发其他粒子,造成连锁反应,雪崩似地获得放大效果,最后就可得到单色性极强的辐射,即激光。1960年,梅曼用红宝石制成第一台可见光的激光器;同年制成氦氖激光器;1962年产生了半导体激光器;1963年产生了可调谐染料激光器。由于激光具有极好的单色性、高亮度和良好的方向性,所以自1958年发现以来,得到了迅速的发展和广泛应用,引起了科学技术的重大变化。
光学的另一个重要的分支是由成像光学、全息术和光学信息处理组成的。这一分支最早可追溯到1873年阿贝提出的显微镜成像理论,和1906年波特为之完成的实验验证;1935年泽尔尼克提出位相反衬观察法,并依此由蔡司工厂制成相衬显微镜,为此他获得了1953年诺贝尔物理学奖;1948年伽柏提出的现代全息照相术的前身——波阵面再现原理,为此,伽柏获得了1971年诺贝尔物理学奖。
自20世纪50年代以来,人们开始把数学、电子技术和通信理论与光学结合起来,给光学引入了频谱、空间滤波、载波、线性变换及相关运算等概念,更新了经典成像光学,形成了所谓“博里叶光学”。再加上由于激光所提供的相干光和由利思及阿帕特内克斯改进了的全息术,形成了一个新的学科领域——光学信息处理。光纤通信就是依据这方面理论的重要成就,它为信息传输和处理提供了崭新的技术。
在现代光学本身,由强激光产生的非线性光学现象正为越来越多的人们所注意。激光光谱学,包括激光喇曼光谱学、高分辨率光谱和皮秒超短脉冲,以及可调谐激光技术的出现,已使传统的光谱学发生了很大的变化,成为深入研究物质微观结构、运动规律及能量转换机制的重要手段。它为凝聚态物理学、分子生物学和化学的动态过程的研究提供了前所未有的技术。
光学的研究内容
我们通常把光学分成几何光学、物理光学和量子光学。
几何光学是从几个由实验得来的基本原理出发,来研究光的传播问题的学科。它利用光线的概念、折射、反射定律来描述光在各种媒质中传播的途径,它得出的结果通常总是波动光学在某些条件下的近似或极限。
物理光学是从光的波动性出发来研究光在传播过程中所发生的现象的学科,所以也称为波动光学。它可以比较方便的研究光的干涉、光的衍射、光的偏振,以及光在各向异性的媒质中传插时所表现出的现象。
波动光学的基础就是经典电动力学的麦克斯韦方程组。波动光学不详论介电常数和磁导率与物质结构的关系,而侧重于解释光波的表现规律。波动光学可以解释光在散射媒质和各向异性媒质中传播时现象,以及光在媒质界面附近的表现;也能解释色散现象和各种媒质中压力、温度、声场、电场和磁场对光的现象的影响。
量子光学
1900年普朗克在研究黑体辐射时,为了从理论上推导出得到的与实际相符甚好的经验公式,他大胆地提出了与经典概念迥然不同的假设,即“组成黑体的振子的能量不能连续变化,只能取一份份的分立值”。
1905年,爱因斯坦在研究光电效应时推广了普朗克的上述量子论,进而提出了光子的概念。他认为光能并不像电磁波理论所描述的那样分布在波阵面上,而是集中在所谓光子的微粒上。在光电效应中,当光子照射到金属表面时,一次为金属中的电子全部吸收,而无需电磁理论所预计的那种累积能量的时间,电子把这能量的一部分用于克服金属表面对它的吸力即作逸出功,余下的就变成电子离开金属表面后的动能。
这种从光子的性质出发,来研究光与物质相互作用的学科即为量子光学。它的基础主要是量子力学和量子电动力学。
光的这种既表现出波动性又具有粒子性的现象既为光的波粒二象性。后来的研究从理论和实验上无可争辩地证明了:非但光有这种两重性,世界的所有物质,包括电子、质子、中子和原子以及所有的宏观事物,也都有与其本身质量和速度相联系的波动的特性。
应用光学
光学是由许多与物理学紧密联系的分支学科组成;由于它有广泛的应用,所以还有一系列应用背景较强的分支学科也属于光学范围。例如,有关电磁辐射的物理量的测量的光度学、辐射度学;以正常平均人眼为接收器,来研究电磁辐射所引起的彩色视觉,及其心理物理量的测量的色度学;以及众多的技术光学:光学系统设计及光学仪器理论,光学制造和光学测试,干涉量度学、薄膜光学、纤维光学和集成光学等;还有与其他学科交叉的分支,如天文光学、海洋光学、遥感光学、大气光学、生理光学及兵器光学等。
Ⅲ 关于光的知识
一.原理
首先,我们需要了解的是,人的眼睛能够看到的光是有限的,并不是所有的光我们都看得到。
那么人眼能够看到的光我们叫做可见光,可见光是电磁波谱中人眼可以感知的部分,可见光谱没有精确的范围;一般人的眼睛可以感知的电磁波的波长在400~760nm之间,但还有一些人能够感知到波长大约在380~780nm之间的电磁波。波长不同的电磁波,引起人眼的颜色感觉不同。所以,可见光对应的颜色从长到短依次为:红、橙、黄、绿、蓝、靛、紫。
二.生活中的应用
波长越长的光,穿透性就越强,也就是能照的更远,比如,红灯的灯光比绿光和黄光更能穿透雾霭传播到远处以提醒司机;交通灯一定要用红灯当作停止灯,绿灯当作通行灯,这主要是因为司机离很远就能看到红灯,从而提前减速,如果是把绿灯当作停止灯,就容易造成交通事故。波长越短,波的能量越大,贯穿能力越强,例如X光可贯穿皮肤、骨骼,紫外线能杀死细菌、强的紫外线能引起皮肤癌等。
Ⅳ 请问下光的科普知识
1.光是由光子组成,它只有动质量,没有静质量,也就是说,他每时每刻在运动,是运动让它具有能量和动量,具有像钢球一样的粒子性,又有像声波一样的的波动性,即波粒二象性。他没有什么形态,只是一种能量,你可以将他想成一个个小小的能量团,看不见。
2.可见的只有可见光,红外线与紫外线是不可见的。颜色是光子撞击视网膜,将能量传递了上去,背神经感知,所以产生了光的感觉。不同颜色的光子频率和能量不同,所以人可以分辨。颜色与光色没什么意义,是频率决定了颜色。E=hv,这时光子的能量计算公式,v是频率,是不同光固定的。
3。光是能量子,照射到上面之后就将能量传递给他,他的能量就增加。同样符合质量守恒定理。
4.我已经说了,光具有波粒二象性,它的波是概率波,里面的光子可以跑向任何地点。光在均匀介质中直线,比如穿过不均匀大气层就是曲线
5.可以转换。听说过无线电波吗,首先他是一种光,他是有L-C振荡电路产生,也就是电了,其次,其中有一个螺线管,可以将电能装换为磁能,在这个过沉中,就产生光——电磁波
6.第六个问完全没看懂,既然光已经转换了,怎么又穿过平面
7.很简单了,电磁波就是光,无线电波也是光,当然在用了。颜色的反应本来就表示光的能量大小,看见颜色说明光能已经传递了。
好了,我可是回答了20分钟,不知能否看懂一点,光很抽象的概念
Ⅳ 物理光线的知识点
光线是表示光的传播路径和方向的直线。光线是一种几何的抽象,真实世界中不可能得到一条光线,口语中光线亦可指光源所辐射的光。
光线可分为:入射光线、反射光线、折射光线。
在几何光学中,不把光看做电磁波,而看作为光能量传播方向的几何线,这种几何线称为光线。光路遵循费马定律。表示光的传播路径和方向的直线称为光线,光线是一种几何的抽象。在实际当中不可能得到一条光线。
光线的分类:入射光线、反射光线、折射光线。
物理学分类
入射光线
在光的反射现象中,从一种介质照射到介质界面的光线,称为入射光线。
入射光线和反射光线
反射定律:当光线射到界面上,反射角等于入射角(两角相等);入射光线、反射光线与法线在同一个平面内(三线共面);入射光线、反射光线分别在法线的两侧,并关于法线对称(两线分居)。
反射光线
光从一种介质传播到另一种介质时,在介质交界面反射回原介质的现象叫做光的反射,被反射回原介质的光线,称为反射光线,入射到交界面的光线称为入射光线
折射光线
当一束光线在一种介质斜射入另一种介质或在同一种不均匀介质中传播时,方向发生偏折后形成的光线,称为折射光线。遵循菲涅耳公式。
折射光线
光污染
没有光就没有色彩,世界上的一切都将是漆黑的。对于人类来说,光和空气、水、食物一样,是不可缺少的。眼睛是人体最重要的感觉器官,人眼对光的适应能力较强,瞳孔可随环境的明暗进行调节。但如果长期在弱光下看东西,视力就会受到损伤。相反,强光可使人眼瞬时失明,重则造成永久伤害。人们必须在适宜的光环境下工作、学习和生活。另一方面,人类活动可能对周围的光环境造成破坏,使原来适宜的光环境变得不适宜,这就是光污染。光污染是一类特殊形式的污染,它包括可见光、激光、红外线和紫外线等造成的污染。
可见光污染比较多见的是眩光。例如每当夜晚在马路边散步时,迎面而来的机动车前照明灯把行人晃得眼都睁不开,这就是一种光污染,叫做——眩光。
炫光污染
这种耀目光源不但在马路上常见,在一些工矿企业也常常会看到。如在烧熔、冶炼以及焊接过程中,会产生有害的光污染。可见光污染危险性较大的是核武器爆炸时的强光。它可使相当范围内的人们的眼睛受到伤害。如果没有适当的防护措施,长期从事电焊、冶炼和熔化玻璃等工作的人,眼睛都会受到伤害,眼睛里出现盲斑,到年老时容易患白内障,这是强光伤害眼睛晶状体的结果。
Ⅵ 初二物理上册光知识点总结最好详细点
光现象知识归纳
1.光源:自身能够发光的物体叫光源。
2.太阳光是由红、橙、黄、绿、蓝、靛、紫组成的。
3.光的三原色是:红、绿、蓝;颜料的三原色是:红、黄、蓝。
4.不可见光包括有:红外线和紫外线。特点:红外线能使被照射的物体发热,具有热效应(如太阳的热就是以红外线传送到地球上的);紫外线最显着的性质是能使荧光物质发光,另外还可以灭菌。
1.光的直线传播:光在均匀介质中是沿直线传播。
2.光在真空中传播速度最大,是3×108米/秒,而在空气中传播速度也认为是3×108米/秒。
3.我们能看到不发光的物体是因为这些物体反射的光射入了我们的眼睛。
4.光的反射定律:反射光线与入射光线、法线在同一平面上,反射光线与入射光线分居法线两侧,反射角等于入射角。(注:光路是可逆的)
5.漫反射和镜面反射一样遵循光的反射定律。
6.平面镜成像特点:(1)平面镜成的是虚像;(2)像与物体大小相等;(3)像与物体到镜面的距离相等;(4)像与物体的连线与镜面垂直。另外,平面镜里成的像与物体左右倒置。
7.平面镜应用:(1)成像;(2)改变光路。
8.平面镜在生活中使用不当会造成光污染。
球面镜包括凸面镜(凸镜)和凹面镜(凹镜),它们都能成像。具体应用有:车辆的后视镜、商场中的反光镜是凸面镜;手电筒的反光罩、太阳灶、医术戴在眼睛上的反光镜是凹面镜。
光的折射知识归纳
光的折射:光从一种介质斜射入另一种介质时,传播方向一般发生变化的现象。
光的折射规律:光从空气斜射入水或其他介质,折射光线与入射光线、法线在同一平面上;折射光线和入射光线分居法线两侧,折射角小于入射角;入射角增大时,折射角也随着增大;当光线垂直射向介质表面时,传播方向不改变。(折射光路也是可逆的)
凸透镜:中间厚边缘薄的透镜,它对光线有会聚作用,所以也叫会聚透镜。
凸透镜成像:
(1)物体在二倍焦距以外(u>2f),成倒立、缩小的实像(像距:f
(2)物体在焦距和二倍焦距之间(f2f)。如幻灯机。
(3)物体在焦距之内(u
光路图:
6.作光路图注意事项:
(1).要借助工具作图;(2)是实际光线画实线,不是实际光线画虚线;(3)光线要带箭头,光线与光线之间要连接好,不要断开;(4)作光的反射或折射光路图时,应先在入射点作出法线(虚线),然后根据反射角与入射角或折射角与入射角的关系作出光线;(5)光发生折射时,处于空气中的那个角较大;(6)平行主光轴的光线经凹透镜发散后的光线的反向延长线一定相交在虚焦点上;(7)平面镜成像时,反射光线的反向延长线一定经过镜后的像;(8)画透镜时,一定要在透镜内画上斜线作阴影表示实心。
7.人的眼睛像一架神奇的照相机,晶状体相当于照相机的镜头(凸透镜),视网膜相当于照相机内的胶片。
8.近视眼看不清远处的景物,需要配戴凹透镜;远视眼看不清近处的景物,需要配戴凸透镜。
9.望远镜能使远处的物体在近处成像,其中伽利略望远镜目镜是凹透镜,物镜是凸透镜;开普勒望远镜目镜物镜都是凸透镜(物镜焦距长,目镜焦距短)。
10.显微镜的目镜物镜也都是凸透镜(物镜焦距短,目镜焦距长)
Ⅶ 物理光学知识点是什么
1、光在同种均匀介质中是沿直线传播的。
2、光的传播不需要介质,真空中的光速C=3×108m/s。
3、光的直线传播的现象:影子,日食,月食。
4、光的直线传播的应用:激光引导掘进方向,射击瞄准,小孔成像。
5、光的反射定律:
(1)反射光线,入射光线,法线在同一平面内;
(2)反射光线,入射光线分居法线两侧;
(3)反射角等于入射角;
(4)在反射现象中,光路是可逆的。
6、光的反射分镜面反射和漫反射两类
7、平面镜成像特点:像与物体大小相同;像与物体到平面镜的距离相等;平面镜所成像的是虚像。
8、光的折射规律:光从空气斜射入水或其它介质中时,折射光线向法线方向偏折;在光的折射现象中,光路是可逆的。(另:光从一种介质垂直射入另一种介质中时,传播方向不变。)
9、光的色散:白光是由红,橙,黄,绿,蓝,靛,紫七种色光组成的。
10、色光的三原色:红,绿,蓝
11、透明物体的颜色是由它透过的色光决定的;不透明物体的颜色是由它反射的色光决定的。
12、凸透镜对光线有会聚作用,凹透镜对光线有发散作用。
13、凸透镜成像规律及应用:
(1)当u>2f时,成倒立,缩小的实像(照相机原理);
(2)当f<U<2F时,成倒立,放大的实像(投影仪原理);
(3)当u<F时,成正立,放大的虚像(放大镜原理);
另:当u=2f时成倒立,等大的实像;(可用来测焦距)当u=f时无法成像。
14、看不见的光:
红外线:主要作用是热作用――红外线烤箱,电视遥控。
15、一倍焦距分虚实,两倍焦距分大小;物近像远像变大,物远像近像变小。
16、老年人戴的老花镜是凸透镜,近视眼患者戴的近视眼镜是凹透镜。
Ⅷ 关于光的知识小学
除了最低等的三色光外:红,黄,绿(可能有错,具体详见初中物理书)之外,其他被三色光组成的大约有十几种,最后还有七色光所组成的颜色——白色。和空间内无任何光所组成的暗色(黑色,其实黑色不能算一种光,但是它是没有光的空间所组成的一种“颜色”
Ⅸ 搜集光的有关知识
光
光分为人造光和自然光。我们之所以能够看到客观世界中斑驳陆离、瞬息万变的景象,是因为眼睛接收物体发射、反射或散射的光。光与人类生活和社会实践有着密切的关系。
严格地说,光是人类眼睛所能观察到的一种辐射。由实验证明光就是电磁辐射,这部分电磁波的波长范围约在红光的0.77微米到紫光的0.39微米之间。波长在0.77微米以上到1000微米左右的电磁波称为“红外线”。在0.39微米以下到0.04微米左右的称“紫外线”。红外线和紫外线不能引起视觉,但可以用光学仪器或摄影方法去量度和探测这种发光物体的存在。所以在光学中光的概念也可以延伸到红外线和紫外线领域,甚至X射线均被认为是光,而可见光的光谱只是电磁光谱中的一部分。
光具有波粒二象性,即既可把光看作是一种频率很高的电磁波(1012~1015赫兹),也可把光看成是一个粒子,即光量子,简称光子。
光是地球生命的来源之一。
光是人类生活的依据。光是人类认识外部世界的工具。光是信息的理想载体或传播媒质。
据统计,人类感官收到外部世界的总信息中,至少90%以上通过眼睛……
光就其本质而言是一种电磁波,覆盖着电磁频谱一个相当宽(从X射线到远红外)的范围,只是波长比普通无线电波更短。人类肉眼所能看到的可见光只是整个电磁波谱的一部分。
当一束光投射到物体上时,会发生反射、折射、干涉以及衍射等现象。
光波,包括红外线,它们的波长比微波更短,频率更高,因此,从电通信中的微波通信向光通信方向发展,是一种自然的也是一种必然的趋势。
普通光:一般情况下,光由许多光子组成,在荧光(普通的太阳光、灯光、烛光等)中,光子与光子之间,毫无关联,即波长不一样、相位不一样,偏振方向不一样、传播方向不一样,就象是一支无组织、无纪律的光子部队,各光子都是散兵游勇,不能做到行动一致。
激光——光学的新天地
激光光束中,所有光子都是相互关联的,即它们的频率(或波长)一致、相位一致、偏振方向一致、传播方向一致。激光就好像是一支纪律严明的光子部队,行动一致,因而有着极强的战斗力。这就是为什么许多事情激光能做,而阳光、灯光、烛光不能做的主要原因。
Ⅹ 有关光的物理知识有哪些
有关光的物理知识:
1、光在同种均匀介质中沿直线传播,光在真空中的速度c=3x10^8m/s
2、光的反射、折射、平面镜成像、凸透镜、凹透镜及成像规律、凸面镜、凹面镜。
3、光的干涉、衍射、偏振现象,光电效应,光的波粒二象性。