Ⅰ 物理中的抛物线公式
平抛运动可正交分解为两个运动:水平方向上的速度为Vo的匀速直线运动和竖直方向上的自由落体运动。
水平方向上位移是x=Vot;
竖直方向上的速度V=gt,位移y=0.5gt²。
【其中Vo是平抛运动的初速度,方向水平;V是竖直方向上的速度,g是重力加速度,t是运动时间;x是水平方向上的位移,y是竖直方向上的位移。】
由此还可求出抛物线的轨迹方程:y=0.5gt²=0.5g(x/Vo)²=(g/2Vo)x²。
Ⅱ 抛物线所有公式
一般式:y=aX2+bX+c(a、b、c为常数,a≠0)
顶点式:y=a(X-h)2+k(a、h、k为常数,a≠0)
交点式(两根式):y=a(x-x1)(x-x2) (a≠0)
其中抛物线y=aX2+bX+c(a、b、c为常数,a≠0)与x轴交点坐标,即方程aX2+bX+c=0的两实数根。
抛物线四种方程的异同
共同点:
①原点在抛物线上,离心率e均为1 ②对称轴为坐标轴;
③准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4。
不同点:
①对称轴为x轴时,方程右端为±2px,方程的左端为y^2;对称轴为y轴时,方程的右端为±2py,方程的左端为x^2;
②开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号;开口方向与x(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号。
切线方程:
抛物线y2=2px上一点(x0,y0)处的切线方程为:
(2)抛物线知识点公式大全扩展阅读:
A(x1,y1),B(x2,y2),A,B在抛物线y2=2px上,则有:
① 直线AB过焦点时,x1x2= p²/4 , y1y2= -p²;
(当A,B在抛物线x²=2py上时,则有x1x2= -p² , y1y2= p²/4 , 要在直线过焦点时才能成立)
② 焦点弦长:|AB| = x1+x2+P = 2P/[(sinθ)2]=(x1+x2)/2+P;
③ (1/|FA|)+(1/|FB|)= 2/P;(其中长的一条长度为P/(1-cosθ),短的一条长度为P/(1+cosθ))
④若OA垂直OB则AB过定点M(2P,0);
⑤焦半径:|FP|=x+p/2 (抛物线上一点P到焦点F的距离等于P到准线L的距离);
⑥弦长公式:AB=√(1+k2)*│x1-x2│;
⑦△=b2-4ac;
⑴△=b2-4ac>0有两个实数根;
⑵△=b2-4ac=0有两个一样的实数根;
⑶△=b2-4ac<0没实数根。
⑧由抛物线焦点到其切线的垂线的距离是焦点到切点的距离与到顶点距离的比例中项;
⑨标准形式的抛物线在(x0,y0)点的切线是:yy0=p(x+x0)
(注:圆锥曲线切线方程中x²=x*x0 ,y²=y*y0,x=(x+x0)/2 , y=(y+y0)/2 )
Ⅲ 抛物线公式
抛物线公式:
一般式:y=aX2+bX+c(a、b、c为常数,a≠0)
顶点式:y=a(X-h)2+k(a、h、k为常数,a≠0)
交点式(两根式):y=a(x-x1)(x-x2) (a≠0)
其中 是抛物线y=aX2+bX+c(a、b、c为常数,a≠0)与x轴交点坐标,即方程aX2+bX+c=0的两实数根。
Ⅳ 抛物线公式
抛物线公式为y=ax^2+bx+c
⑴a 0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点(顶点):( , );
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
( ,0)和( ,0);
Δ=0,图象与x轴交于一点:
( ,0);
Δ<0,图象与x轴无交点;
(5)对称轴(顶点)在y 轴 左侧时 , a ,b 同号 ,对称轴 (顶点 ) 在 y 轴右侧时,a 、b 异号;对称轴(顶点)在y轴上时, b=0,抛物线的顶点在原点时, b=c=0。
(6)当x=0时,可通过与y轴交点判断c值,即若抛物线交y轴为正半轴,则c>0;若抛物线交y轴为负半轴,则c<0
(4)抛物线知识点公式大全扩展阅读
抛物线标准方程右开口抛物线:y^2=2px
左开口抛物线:y^2= -2px
上开口抛物线:x^2=2py y=ax^2(a大于等于0)
下开口抛物线:x^2= -2py y=ax^2(a小于等于0)
[p为焦准距(p>0)]
线段AB的中点为M,点A,M,B在准线l的上的射影分别为A1,M1,B1
Ⅳ 高中数学抛物线的基本知识点有哪些
高中数学抛物线的基本知识点如下:
1、定系数法:根据条件设出标准方程,再确定参数p的值,这里要注意抛物线标准方程有四种形式。从简单化角度出发,焦点在x轴的,设为y2=ax(a≠0),焦点在y轴的,设为x2=by(b≠0)。
2、单位长度的规定:一般情况下横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
3、由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py。
4、对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的.对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
5、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
Ⅵ 抛物线所有公式总结是什么
抛物线所有公式总结是如下:
一般式:ax²+bx+c(a、b、c为常数,a≠0)。
顶点式:y=a(X-h)2+k(a、h、k为常数,a≠0)。
交点式(两根式):y=a(x-x1)(x-x2)(a≠0)。
其中抛物线y=aX2+bX+c(a、b、c为常数,a≠0)与x轴交点坐标,即方程aX2+bX+c=0的两实数根。
抛物线标准方程:
右开口抛物线:y^2=2px。
左开口抛物线:y^2= -2px。
上开口抛物线:x^2=2py y=ax^2(a大于等于0)。
下开口抛物线:x^2= -2py y=ax^2(a小于等于0)。
[p为焦准距(p>0)]。
Ⅶ 抛物线的基本知识点有哪些
一、抛物线的基本知识点
1、定义:平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。
2、抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0).
3、抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
4、二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
5、一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
6、常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)。
二、抛物线的几何变换
Ⅷ 抛物线的基本知识点有哪些
1、抛物线是轴对称图形。对称轴为直线x=-b/2a。
2、对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)。
3、抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当=b^2-4ac=0时,P在x轴上。
4、二次项系数a决定抛物线的开口方向和大小。
5、当a0时,抛物线向上开口;当a0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
Ⅸ 有关抛物线的所有定理公式
我只能提供初中级的
对于y=ax²+bx+c
顶点坐标
(-2a/b,(4ac-b²)/4a)
对称轴
x=-2a/b
与X轴交点个数
b²-4ac
若>0
则有2个交点
若=0
则有1个交点
若<0
则无交点
设于x轴交点横坐标分别为
x1
x2
则x1+x2=-b/a
x1x2=c/a
多做题你自然就知道了