‘壹’ 高中数学会考必背知识点
那种会考必备的知识点,轻大多数都是一些高一所有的东西,或者是初中还有一部分。
‘贰’ 高二会考历史必背知识点
一、秦汉文化的特点
统一性与多样性有机结合,外文化交流空前频繁,水平居世界先进行列,气势恢弘。
二、科技
1、天文:汉武帝时,“太初历”是中国第一部较完整的历书,开始以正月为首;公元前28
年,西汉关于太阳黑子的记录,被世界公认为是有关太阳黑子的最早记录;东汉张衡对月食作
了最早的科学解释,还发明了测定地震方位的仪器——地动仪,比欧洲早1700多年。
2、数学:东汉的《九章算术》是当时世界上最先进的应用数学,标志着中国古代数学形成完整的体系。
3、医学:战国问世、西汉编定的《黄帝内经》奠定了祖国医学的理论基础;东汉《神农本
草经》是中国第一部完整的药物学着作;张仲景和华佗是东汉末年最着名的两位医学家。张仲
景的《伤寒杂病论》(分成《伤寒论》与《金匮要略》两部书)是后世中医的重要经典,为中医临床的辨症施治奠定了基础,后人称张仲景为“医圣”。东汉华佗擅长外科手术,被人誉
为“神医”。他发明的麻沸散,是一种麻醉药,适用于外科手术。这一发明比西方早1600多年。
4、造纸:我国是世界最早发明纸的国家,西汉时已有絮纸和麻纸,甘肃天水放马滩出土
的绘有地图的纸,是目前世界上所知最早的纸。公元105年,蔡伦发明“蔡侯纸”, 造纸术
的发明与改进,是书写材料的一次伟大革命。6世纪起,造纸术传到朝鲜、越南和日本,8世
纪传到中亚,并经阿拉伯传到非洲与欧洲,为人类文化发展作出了巨大的贡献。
三、哲学
1、西汉董仲舒的新儒学:董仲舒新儒学特点是以儒学为基础,以阴阳五行为框架。兼采诸子百家,建立起具有神学倾向的新儒学。董仲舒新儒学的核心是“天人感应”、“君权神授”。董仲舒的思想集中体现在《天人三策》和《春秋繁露》等文献中,是唯心主义思想,在当时对巩固政权和国家统一安定其积极作用,成为封建社会的正统思想。
其核心是“天人感应”和“君权神授”。
2、王充及其《论衡》:东汉前期,我国古代杰出的唯物主义思想家王充。王充的思想集中体现在《论衡》一书中。王充反对天人感应说,反对有鬼论,反对厚葬,提倡薄葬。
四、宗教
1、佛教的传入:西汉末年,佛教经中亚传入中国。汉明帝派专使到西域求佛法,立洛阳白马寺,佛教在中国传布开来。
2、道教的形成:道教是我国土生土长的宗教。东汉时,由民间流行的神仙方术与黄老学说的某些成分相结合,形成了道教。道教的主要经典是《太平经》,它以阴阳五行解释治国之道。东汉末年,道教派别有张角传授的太平道,张陵、张鲁祖孙传布的五斗米道。
五、史学
西汉司马迁的《史记》是中国第一部纪传体通史;东汉班固的《汉书》是中国第一部断代史。
六、文学
赋是兴起流行于两汉时期的一种新型的体裁。其特点是辞藻华丽,笔法铺张,
缺乏充实的生活内容;代表作有司马相如的《子虚赋》、《上林赋》及班固的《两都赋》;乐府
诗是汉代诗歌的主要形式,《十五从军征》等是乐府诗的名篇。
七、艺术
秦始皇兵马俑是雕塑艺术的珍品;成都说唱俑、洛阳杂技俑;秦汉大量的砖瓦、
瓦当;长沙马王堆汉墓出土的彩色帛画是帛画的稀世之宝。
‘叁’ 高中会考数学题
2x-3y-5=0
y=(2/3)x-5/3
slope m1= 2/3
2x-3y-5=0垂直的直线 : slope m2= -3/2
过点(1,1)
垂直的直线方程
y-1=m2(x-1)
=-(3/2)(x-1)
‘肆’ 2007福建的高中数学会考复习资料
初中数学总复习提纲 第一章 实数 ★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆ 一... 综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决...
‘伍’ 高中数学会考应怎样复习
每个省都有自己的会考说明的,你去按照会考说明前面的知识条目及考试要求纲要。去看一遍,把每个章节的基本公式,要点,能写的回忆着写下来。不能写的去课本上翻,并整理下来。然后做会考说明上的练习。把这些基本的弄懂,也就能过了!【对了。还有就是按照考试要求的等级来处理,如果对于你来说,难的模块就把它放弃,熟记基础的。】我们都是曾经为会考奋斗过的人,希望你的会考复习能顺利进行。加油!
‘陆’ 高中会考怎么过掌握哪些和多少知识点才能过啊各科怎么复习才有效果
我是大学才毕业的人 高中会考比较简单 只要简单的语文数学英语基本知识就行 我高中成绩不好 不过很好过会考 和高考难度有天壤之别 只要不交白卷 态度不端正 一般都能过 希望能帮到你
‘柒’ 高中数学会考知识点
高中数学会考知识点总结_(超级经典)
网络文库
https://wenku..com/view/2013fbcfe53a580216fcfe58.html?re=view
‘捌’ 高中数学会考
继续后续解不等式,
x²-2x-3<0,
(x+1)(x-3)<0,
-1<x<3
‘玖’ 高中数学知识点总结
《高中数学基础知识梳理(数学小飞侠)》网络网盘免费下载
链接:
资源目录
01.集合例题讲解.mp4
01.集合进阶.mp4
02函数的值域.mp4
03函数的定义域与解析式.mp4
04函数的单调性.mp4
04函数的奇偶性.mp4
05指数运算与指数函数.mp4
07对数运算与对数函数.mp4
08幂函数突破.mp4
09函数零点专题.mp4
10含参二次函数与不等式专题.mp4
11二次函数根的分布专题.mp4
12空间几何体.mp4
13点线面位置关系进阶.mp4
14平行关系突破.mp4
15垂直关系突破.mp4
16空间几何关系综合.mp4
17直线方程突破.mp4
18圆的方程突破.mp4
19算法初步.mp4
20算法语句与算法案例.mp4
21数据的收集与频率分布.mp4
22常用统计量与相关关系.mp4
23古典概型概率.mp4
24几何概型概率.mp4
25任意角重难点.mp4
26三角函数定义与诱导公式.mp4
27三角函数图像及性质.mp4
28平面向量几何运算.mp4
29平面向量代数运算.mp4
30.三角恒等变换.mp4
31.三角函数计算专题.mp4
32.正弦定理与余弦定理.mp4
33.等差数列突破.mp4
34.等比数列突破.mp4
35.数列通项公式专题 .mp4
36.数列求和公式专题 .mp4
37.二次不等式与分式不等式.mp4
38.线性规划问题.mp4
39.基本不等式突破.mp4
40.逻辑用语专题.mp4
41.椭圆方程及其几何性质.mp4
42.双曲线方程及其性质.mp4
43.抛物线方程及其性质.mp4
44.直线与圆锥曲线综合.mp4
45.空间向量突破.mp4
46.导数的计算专题.mp4
47.导数的应用.mp4
48.导数的应用(二).mp4
49.定积分与微积分.mp4
50.复数专题.mp4
51.排列组合.mp4
52.二项式定理.mp4
53.随机变量及其变量.mp4
54回归分析与独立性检验.mp4
资源目录
01.集合例题讲解.mp4
01.集合进阶.mp4
02函数的值域.mp4
03函数的定义域与解析式.mp4
04函数的单调性.mp4
04函数的奇偶性.mp4
05指数运算与指数函数.mp4
07对数运算与对数函数.mp4
08幂函数突破.mp4
09函数零点专题.mp4
10含参二次函数与不等式专题.mp4
11二次函数根的分布专题.mp4
12空间几何体.mp4
13点线面位置关系进阶.mp4
14平行关系突破.mp4
15垂直关系突破.mp4
16空间几何关系综合.mp4
17直线方程突破.mp4
18圆的方程突破.mp4
19算法初步.mp4
20算法语句与算法案例.mp4
21数据的收集与频率分布.mp4
22常用统计量与相关关系.mp4
23古典概型概率.mp4
24几何概型概率.mp4
25任意角重难点.mp4
26三角函数定义与诱导公式.mp4
27三角函数图像及性质.mp4
28平面向量几何运算.mp4
29平面向量代数运算.mp4
30.三角恒等变换.mp4
31.三角函数计算专题.mp4
32.正弦定理与余弦定理.mp4
33.等差数列突破.mp4
34.等比数列突破.mp4
35.数列通项公式专题 .mp4
36.数列求和公式专题 .mp4
37.二次不等式与分式不等式.mp4
38.线性规划问题.mp4
39.基本不等式突破.mp4
40.逻辑用语专题.mp4
41.椭圆方程及其几何性质.mp4
42.双曲线方程及其性质.mp4
43.抛物线方程及其性质.mp4
44.直线与圆锥曲线综合.mp4
45.空间向量突破.mp4
46.导数的计算专题.mp4
47.导数的应用.mp4
48.导数的应用(二).mp4
49.定积分与微积分.mp4
50.复数专题.mp4
51.排列组合.mp4
52.二项式定理.mp4
53.随机变量及其变量.mp4
54回归分析与独立性检验.mp4
‘拾’ 高中所有数学必须掌握的知识点有哪些什么网站上的比较全
实用工具:常用数学公式 公式分类 公式表达式 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0 注:方程有两个不等的实根 b2-4ac<0 注:方程没有实根,有共轭复数根 三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式 万能公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα ·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα ·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2) 半角的正弦、余弦和正切公式 三角函数的降幂公式 二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式 sin2α=2sinαcosα cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α 2tanα tan2α=————— 1-tan2α sin3α=3sinα-4sin3α cos3α=4cos3α-3cosα 3tanα-tan3α tan3α=—————— 1-3tan2α 三角函数的和差化积公式 三角函数的积化和差公式 α+βα-β sinα+sinβ=2sin—--·cos—-— 2 2 α+βα-β sinα-sinβ=2cos—--·sin—-— 2 2 α+βα-β cosα+cosβ=2cos—--·cos—-— 2 2 α+βα-β cosα-cosβ=-2sin—--·sin—-— 2 2 1 sinα ·cosβ=-[sin(α+β)+sin(α-β)] 2 1 cosα ·sinβ=-[sin(α+β)-sin(α-β)] 2 1 cosα ·cosβ=-[cos(α+β)+cos(α-β)] 2 1 sinα ·sinβ=- -[cos(α+β)-cos(α-β)] 2 反函数 一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x)。则y=f(x)的反函数为y=f(x)^-1。 存在反函数的条件是原函数必须是一一对应的(不一定是整个数域内的) 【反函数的性质】 (1)互为反函数的两个函数的图象关于直线y=x对称; (2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致; (4)一般的偶函数一定不存在反函数(但一种特殊的偶函数存在反函数,例f(x)=a(x=0)它的反函数是f(x)=0(x=a)这是一种极特殊的函数),奇函数不一定存在反函数。关于y轴对称的函数一定没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。 (5)一切隐函数具有反函数; (6)一段连续的函数的单调性在对应区间内具有一致性; (7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】。 (8)反函数是相互的 (9)定义域、值域相反对应法则互逆(三反) (10)原函数一旦确定,反函数即确定(三定) 例:y=2x-1的反函数是y=0.5x+0.5 y=2^x的反函数是y=log2 x 例题:求函数3x-2的反函数 解:y=3x-2的定义域为R,值域为R. 由y=3x-2解得 x=1/3(y+2) 将x,y互换,则所求y=3x-2的反函数是 y=1/3(x+2) [编辑本段]⒈ 反函数的定义 一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= f(y). 若对于y在C中的任何一个值,通过x= f(y),x在A中都有唯一的值和它对应,那么,x= f(y)就表示y是自变量,x是自变量y的函数,这样的函数x= f(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f^-1(y). 反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域. 说明:⑴在函数x=f^-1(y)中,y是自变量,x是函数,但习惯上,我们一般用x表示自变量,用y 表示函数,为此我们常常对调函数x=f^-1(y)中的字母x,y,把它改写成y=f^-1(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种经过改写的形式. ⑵反函数也是函数,因为它符合函数的定义. 从反函数的定义可知,对于任意一个函数y=f(x)来说,不一定有反函数,若函数y=f(x)有反函数y=f^-1(x),那么函数y=f^-1(x)的反函数就是y=f(x),这就是说,函数y=f(x)与y=f^-1(x)互为反函数. ⑶从映射的定义可知,函数y=f(x)是定义域A到值域C的映射,而它的反函数y=f^-1(x)是集合C到集合A的映射,因此,函数y=f(x)的定义域正好是它的反函数y=f^-1(x)的值域;函数y=f(x)的值域正好是它的反函数y=f^-1(x)的定义域 幂函数 形如y=x^a(a为常数)的函数,称为幂函数。 如果a取非零的有理数是比较容易理解的,不过初学者对于a取无理数,则不太容易理解,在我们的课程里,不要求掌握如何理解指数为无理数的问题,因为这涉及到实数连续统的极为深刻的知识。因此我们只要接受它作为一个已知事实即可。 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 首先我们知道如果a=p/q,且p/q为既约分数(即p、q互质),q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排除了为0与负数两种可能,即对于x>0,则a可以是任意实数; 排除了为0这种可能,即对于x<0或x>0的所有实数,q不能是偶数; 排除了为负数这种可能,即对于x为大于或等于0的所有实数,a就不能是负数。 总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下: 如果a为任意实数,则函数的定义域为大于0的所有实数; 如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。 在x大于0时,函数的值域总是大于0的实数。 在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。 而只有a为正数,0才进入函数的值域。 由于x大于0是对a的任意取值都有意义的, 必须指出的是,当x<0时,幂函数存在一个相当棘手的内在矛盾:[x^(a/b)]^(c/d)、[x^(c/d)]^(a/b)、x^(ac/bd)这三者相等吗?若p/q是ac/bd的既约分数,x^(ac/bd)与x^(p/q)以及x^(kp/kq)(k为正整数)又能相等吗?也就是说,在x<0时,幂函数值的唯一性与幂指数的运算法则发生不可调和的冲突。对此,现在有两种观点:一种坚持通过约定既约分数来处理这一矛盾,能很好解决幂函数值的唯一性问题,但幂指数的运算法则较难维系;另一种观点则认为,直接取消x<0这种情况,即规定幂函数的定义域为[0,+∞)或(0,+∞)。看来这一问题有待专家学者们认真讨论后予以解决。 因此下面给出幂函数在第一象限的各自情况. 可以看到: (1)所有的图形都通过(1,1)这点.(a≠0) a>0时 图像过点(0,0)和(1,1) (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。 (3)当a大于1时,幂函数图形下凸;当a小于1大于0时,幂函数图形上凸。 (4)当a小于0时,a越小,图形倾斜程度越大。 (5)显然幂函数无界限。 (6)a=0,该函数为偶函数 {x|x≠0}。 数学中的零点: 对于函数y=f(x),使得f(x)=0的实数x叫做函数f(x)的零点. 这样,函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图像与x轴的交点的横坐标.所以 方程f(x)=0有实数根 〓函数y=f(x)的图像与x轴有交点 〓函数y=f(x)有零点 1)观察归纳法 这个方法需要学生很强的反应能力! 比如21,203,2005,20007```这个你能很快看出来吗 ? (2)累差法和累商法(我们书本教材上叫做迭加和迭乘,具体书本上有我就不多说了) 形如:已知a1,且a(n+1)-an=f(n) 已知a1,且a(n+1)/an=f(n) (3)构造法 这个方法最难,不过把握技巧后无论什么题目都是迎刃而解 形如:已知a1,a(n+1)=pan+q的形式就可构造,即配成a(n+1)+x=p(an+x) 当然中间减号也是一样! 例题,数列满足a1=1,a(n+1)=1/2 an+1 解:设a(n+1)+A=1/2(an+A) 然后一零待定系数放,这个展开各项都应等于原题的各项就可以求出了! (4)公式法 这个方法不用多讲了!两个公式,等差,等比!不用题目往往不会考你那么简单,经常都设置个陷阱,可能是 n=1常常没考虑进去!所以做题时应慎之!