当前位置:首页 » 基础知识 » 初一数学知识网图
扩展阅读

初一数学知识网图

发布时间: 2022-03-06 17:15:25

A. 求七年级下册数学网络知识图

第一章 有理数 1.1 正数与负数 在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。 与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。 1.2 有理数 正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。 整数和分数统称有理数(rational number)。 通常用一条直线上的点表示数,这条直线叫数轴(number axis)。 数轴三要素:原点、正方向、单位长度。 在直线上任取一个点表示数0,这个点叫做原点(origin)。 只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0) 数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。 1.3 有理数的加减法 有理数加法法则: 1.同号两数相加,取相同的符号,并把绝对值相加。 2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。 3.一个数同0相加,仍得这个数。 有理数减法法则:减去一个数,等于加这个数的相反数。 1.4 有理数的乘除法 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。 乘积是1的两个数互为倒数。 有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。 两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì 求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。 负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。 把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。 从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。 第二章 一元一次方程 2.1 从算式到方程 方程是含有未知数的等式。 方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。 解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。 等式的性质: 1.等式两边加(或减)同一个数(或式子),结果仍相等。 2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。 2.2 从古老的代数书说起——一元一次方程的讨论(1) 把等式一边的某项变号后移到另一边,叫做移项。 第三章 图形认识初步 3.1 多姿多彩的图形 几何体也简称体(solid)。包围着体的是面(surface)。 3.2 直线、射线、线段 线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。 连接两点间的线段的长度,叫做这两点的距离。 3.3 角的度量 1度=60分 1分=60秒 1周角=360度 1平角=180度 3.4 角的比较与运算 如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。 如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。 等角(同角)的补角相等。 等角(同角)的余角相等。 第四章 数据的收集与整理 收集、整理、描述和分析数据是数据处理的基本过程。 基本是这些,其他需要自己运用知识答题! (以上是七上的) 七下: 第一章:三角形的初步认识 主要性质: (1) 三角形任何两边的和大于第三边。 (2) 三角形三个内角的和等于180°。三角形的一个外角等于的它不相邻的两个内角的和。 (3) 全等三角形的对应边相等,对应角相等。 (4) 有三边对应相等的两个三角形全等(简写成“边边边”或“SSS”);有一个角和夹这个角的两边对应相等的两个三角形全等(简写成“边角边”或“SAS”);有两个角和这两个角的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”);有两个角和其中一个角的对边对应相等的两个三角形全等(简写成“角角边”或“AAS”) (5) 线段垂直平分线上的点到线段两端点的距离相等。角平分线上的点到角两边的距离相等。 第二章:图形和变换 主要性质 (1) 对称轴垂直平分连结两个对称点之间的线段,轴对称变换不改变图形的形状和大小。 (2) 平移变换不改变图形的形状、大小和方向,并且连接对应点的线段平行而且相等。 (3) 旋转变换不改变图形的大小和形状,并且对应点到旋转中心的距离都相等,对应点与旋转中心连线所成的角度都等于旋转的角度。 (4) 相似变换不改变图形中每一个角的大小;图形中的每条线段都扩大(或缩小)相同的倍数。 第三章:事件的可能性 (1)在一定条件下必然发生的事件叫做必然事件;在一定条件下必然不会发生的事件叫做不可能事件;在一定条件下,可能发生也可能不发生的的事件称为不确定事件(或随机事件) (2)在数学上,事件发生的可能性的大小也称为事件发生的概率.必然事件发生的概率为1或100%,不可能事件发生的概率为0,若用P表示不确定事件发生的概率,则0<P<1 第四章: 含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程,使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。 由两个一次方程组成,且含有两个未知数的方程组,叫做二元一次方程组。同时满足二元一次方程组中各个方程的解,叫做二元一次方程组的解。 基本思路 二元一次方程 消元 一元一次方程 应用方程组解决实际问题的步骤 理解问题(审题,搞清已知和未知,分析数量关系) 制订计划(考虑如何根据等量关系设元,列出方程组) 执行计划(列出方程组并求解,得出答案) 回顾(检查和反思解题过秤,检验答案的正确性以及是否符合题意) 主要方法和技能 用代入法和加减法解二元一次方程组 应用二元一次方程组解决简单的实际问题 第五章 整数指数幂及其运算的基本法则 整式的乘法法则 单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式 单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。 多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加 整式的除法法则 单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。 多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。 第六章 1.分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变。即 其中M是不等于零的整式。 2.分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 3.同分母的分式相加减,把分子相加减,分母不变。 4.同分母不相同的几个分式,化成分母相同的分式,叫做通分。经过通分,异分母分式的加减就转化成同分母分式的加减。 5.解分式方程必须验根.把求得的根代入原方程,或代入原方程两边所乘的公分母,使分式为零的根,叫做增根,增根必须舍去。 七年级数学下期复习提纲: 一、 概念知识 1、 单项式:数字与字母的积,叫做单项式。 2、 多项式:几个单项式的和,叫做多项式。 3、 整式:单项式和多项式统称整式。 4、 单项式的次数:单项式中所有字母的指数的和叫单项式的次数。 5、 多项式的次数:多项式中次数最高的项的次数,就是这个多项式的次数。 6、 余角:两个角的和为90度,这两个角叫做互为余角。 7、 补角:两个角的和为180度,这两个角叫做互为补角。 8、 对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。 9、 同位角:在“三线八角”中,位置相同的角,就是同位角。 10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。 11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。 12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。 13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。 14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。 16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。 17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。 18、全等图形:两个能够重合的图形称为全等图形。 19、变量:变化的数量,就叫变量。 20、自变量:在变化的量中主动发生变化的,变叫自变量。 21、因变量:随着自变量变化而被动发生变化的量,叫因变量。 22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。 23、对称轴:轴对称图形中对折的直线叫做对称轴。 24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线) 二、 计算能力 (A) 整式的计算。 1、 整式的加减 去括号,合并同类项! 2、 幂运算(七个公式) ① 同底数幂相乘:底数不变,指数相加。 ②幂的乘方:底数不变,指数相乘。 ③积的乘方:等于每个因数乘方的积。 ④同指数幂相乘:指数不变,底数相乘。

B. 初一上学期数学知识点归纳

初中数学宝典,你知道学习数学最重要的是什么吗?

在初中学习数学这们课程的时候很多的学生都是比较烦恼的,因为这们课程是非常难的,并且难点非常多,很多的学生在刚开始学习的时候还可以更得上,但是过一段时间之后就会变得非常的吃力,那么你知道初中数学宝典是什么吗?我们来了解一下吧!

复习知识点

以上就是初中数学宝典的内容,当学习吃力的时候可以先复习一下之前的内容,当然这个时候之前记得笔记就可以用来复习了,这样可以更好的帮助我们学习后期的内容,并且可以改善学习吃力的问题.

C. 初一数学各章知识梳理图

这里有下载地址:
http://www.40061.cn/thread-600-1-1.html
http://wenku..com/view/5502c069a45177232f60a22f.html
初一数学概念
实数:
—有理数与无理数统称为实数。
有理数:
整数和分数统称为有理数。
无理数:
无理数是指无限不循环小数。
自然数:
表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。
数轴:
规定了圆点、正方向和单位长度的直线叫做数轴。
相反数:
符号不同的两个数互为相反数。
倒数:
乘积是1的两个数互为倒数。
绝对值:
数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。

数学定理公式
有理数的运算法则
⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
⑵减法法则:减去一个数,等于加上这个数的相反数。
⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线。
数学第一章相交线

一、邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角。邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角。

二、对顶角:是两条直线相交形成的。两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”。

对顶角的性质:对顶角相等。

三、垂直

1、垂直:两条直线所成的四个角中,有一个是直角时,就说这两条直线互相垂直。其中一条叫做另一条的垂线,它们的交点叫做垂足。记做a⊥b

垂直是相交的一种特殊情形。

2、垂线的性质:

①过一点有且只有一条直线与已知直线垂直;

②连接直线外一点与直线上各点的所有线段中,垂线段最短。

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

3、画法:①一靠(已知直线)②二过(定点)③三画(垂线)

4、空间的垂直关系

四、平行线

1、 平行线:在同一平面内,不相交的两条直线叫做平行线。记做a‖b

2、 “三线八角”:两条直线被第三条直线所截形成的

① 同位角:“同方同位”即在两条直线的上方或下方,在第三条直线的同一侧。

② 内错角:“之间两侧”即在两条直线之间,在第三条直线的两侧。

③ 同旁内角“之间同旁”即在两条直线之间,在第三条直线的同旁。

3、 平行公理:经过直线外一点,有且只有一条直线与这条直线平行

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

4、 平行线的判定方法

① 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;

② 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;

③ 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;

④ 平行于同一条直线的两条直线平行;

⑤ 垂直于同一条直线的两条直线平行。

5、 平行线的性质:

①两条平行线被第三条直线所截,同位角相等;

②两条平行线被第三条直线所截,内错角相等;

③两条平行线被第三条直线所截,同旁内角互补。

6、 两条平行线的距离:同时垂直于两条平行线并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离。

7、 命题:判断一件事情的语句,叫做命题,由题设和结论两部分组成。

五平移

1、平移:在平面内将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

说明:①、平移不改变图形的形状和大小,改变图形的位置;②“将一个图形沿某个方向移动一定的距离”意味着“图形上的每一点都沿着同一方向移动了相同的距离 ”这也是判断一种运动是否为平移的关键。③图形平移的方向,不一定是水平的

2、平移的性质:经过平移,对应线段、对应角分别相等,对应点所连的线段平行且相等。

D. 求初一数学整式知识结构图

图就没了…
只有文字的

整式知识点
1.
由数与字母的乘积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。如:
等都是单项式。
2.
单项式的系数、次数,单项式中的数字因数叫做单项式的系数。如
的系数分别是5,
,单项式ab的系数是“1”,单项式
的系数是


单项式中,所有字母的指数的和叫做单项式的次数,如单项式
叫5次单项式,
叫做三次单项式。

3.
多项式及多项式的次数。

几个单项式的和叫做多项式,在多项式中,每个单项式叫多项式的项,不含字母的项叫常数项。多项式里,次数最高项的次数,就是这个多项式的次数。

如多项式
是一个四次三项式。

多项式
是一个七次二项式。

4.
多项式的升幂排列和降幂排列:

把一个多项式按某一字母的指数从大到小的顺序排列起来,叫做这个多项式按这个字母降幂排列。

把一个多项式按某一字母的指数从小到大的顺序排列起来,叫做这个多项式按这个字母升幂排列。

由于多项式的项包括它前面的性质符号,因此在排列时,需带符号一起移动,在含有两个或两个以上字母的多项式,按某一字母排列时,要特别注意按哪一个字母排列。

5.
整式的概念

单项式和多项式统称为整式

6.
同类项的概念:所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也是同类项。

判断几个单项式(或同一个多项式的项)是不是同类项有两个条件(1)所含有的字母相同(2)相同字母的指数分别相同。只有这两个条件同时具备了才能说它们是同类项。

同类项与其系数无关,与字母的顺序无关。

7.
合并同类项

合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变。

合并同类项的具体步骤:

第一步:准确地找出同类项

第二步:利用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

第三步:写出合并结果。

8.
去括号和添括号

去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号。

括号前是“-”号,把括号和它前面的“-”号去掉。括号里各项都改变符号。

去括号时,要连同括号前面的符号一起去掉。

添括号法则:所添括号前面是“+”号,括到括号里的各项都不变符号。

所添括号前面是“-”号,括到括号里的各项都改变符号。

添括号和去括号的过程正好相反,添括号是否正确,不妨用去括号检验一下。

9.
整式的加减

整式的加减实际上就是合并同类项,在运算中如果遇到括号,要先运用去括号法则(或分配律),去掉括号后再合并同类项,只要算式中没有同类项了,就是运算的最后结果。

E. 初一下学期数学第六章单元小结的知识网络图

不知道楼主是什么版本的,我学的是人教版,我们老师家我们的时候没有画网络图,是分成了一个个的知识点,下面我给楼主列出来:

第六章:小结
1.已知点,求坐标。
2.已知坐标,求点。
3.点P(m,n)到x轴的距离为|n|,到y轴的距离为|m|。
4.各象限内的坐标符号。
5.坐标上的点的特征:
(1)P(m,n)在x轴上,则n=0,m为任何数(反之亦然)
(2)P(m,n)在x轴上,则m=0,n为任何数(反之亦然)
6.平行于坐标的点的特征:
(1)A(m,n) B(x,y) AB‖x轴,则n=y m≠x
(2)C(a,b) D(e,f) CD‖y轴,则a=e b≠f
7.点的平移:
口诀:左减右加,上加下减。(向左移,横坐标减;向右移,横坐标加;向上移,纵坐标加;向下移,纵坐标减)
8.对称点的坐标关系:
点P(m,n)关于x轴对称的点为A(m,-n)
点P(m,n)关于y轴对称的点为A(-m,n)
点P(m,n)关于原点对称的点为A(-m,-n)
9.球平面直角坐标系中的平面图形的面积:
方法:把不规则图形转化为一个个规则图形,然后求出每个规则图形的面积,再将各个规则图形的面积加起来。
10.画平移图形
图形的平移就是把图形中各个点分别向同一方向移动同样的距离,然后再将各个点顺驰连接起来。

好了,楼主,这全是我自己打的,绝对没有抄袭~~~~

F. 画七年级数学上册书知识网络图,什么是知识网络图啊

所谓的知识网络图 指的是 将知识画成各个之间联系紧密 能够一目了然的图画
以人教版七年级数学 为例
第一章 有理数 整数 正整数 0 负整数
分数 正分数 负分数
数轴 三要素 原点 正方向 单位长度
绝对值 到原点的距离相等的点 正数的绝对值是本身 负数的绝对值是它的相反数 0 的绝对值是0
相反数 符号不同 绝对值相等的点 例如 2 ,-2 3 ,-3
你可以像这样些 用大括号括上

G. 七年级下册数学知识结构图

北师大版七年级下册数学知识结构图
一、整式的运算
1、整式
2、整式的加法
3、同底数幂的乘法
4、幂的乘方与积的乘方
5、整式的乘法
6、平方差公式
7、完全平方公式
8、整式的除法
二、平行线与相交线
1、余角与补角
2、探索平行的条件
3、平行线的特征
4、用尺规作线段和角
三、生活中的数据
1、认识百万分之一
2、近似数和有效数字
3、世纪新生儿图
课题学习:制作“人口图”
四、概率
1、游戏公平吗
2、摸到红球的概率
3、停留在黑砖上的概率
五、三角形
1、认识三角形
2、图形的全等
3、全等三角形
4、探索三角形全等的条件
5、作三角形
6、利用三角形全等测距离
7、探索直角三角形全等的条件
六、变量之间的关系
1、小车下滑的时间
2、变化中的三角形
3、温度的变化
4、速度的变化
七、生活中的轴对称
1、轴对称现象
2、简单的轴对称图形
3、探索轴对称的性质
4、利用轴对称设计图案
5、镜子改变了什么

H. 初一数学第一章知识结构图

无限不循环小数和开根开不尽的数叫无理数
整数和分数统称为有理数
数学上,有理数是两个整数的比,通常写作 a/b,这里 b 不为零。分数是有理数的通常表达方法,而整数是分母为1的分数,当然亦是有理数。
数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 λογο�0�9 ,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。不是有理数的实数遂称为无理数。
所有有理数的集合表示为 Q,有理数的小数部分有限或为循环。

理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数。 如圆周率、2的平方根等。

实数(real munber)分为有理数和无理数(irrational number)。

·无理数与有理数的区别:

1、把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数,

比如4=4.0, 4/5=0.8, 1/3=0.33333……而无理数只能写成无限不循环小数,

比如√2=1.414213562…………根据这一点,人们把无理数定义为无限不循环小数.

2、所有的有理数都可以写成两个整数之比;而无理数不能。根据这一点,有人建议给无理数摘掉“无理”的帽子,把有理数改叫为“比数”,把无理数改叫为“非比数”。本来嘛,无理数并不是不讲道理,只是人们最初对它不太了解罢了。

利用有理数和无理数的主要区别,可以证明√2是无理数。

证明:假设√2不是无理数,而是有理数。

既然√2是有理数,它必然可以写成两个整数之比的形式:

实数包括有理数和无理数。其中无理数就是无限不循环小数和开根开不尽的数,有理数就包括无限循环小数、有限小数、整数

自然数(natural number)
用以计量事物的件数或表示事物次序的数 。 即用数码0,1,2,3,4,……所表示的数 。自然数由0开始 , 一个接一个,组成一个无穷集合。自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。自然数是人们认识的所有数中最基本的一类,为了使数的系统有严密的逻辑基础,19世纪的数学家建立了自然数的两种等价的理论枣自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。
序数理论是意大利数学家G.皮亚诺提出来的。他总结了自然数的性质,用公理法给出自然数的如下定义。
自然数集N是指满足以下条件的集合:①N中有一个元素,记作1。②N中每一个元素都能在 N 中找到一个元素作为它的后继者。③ 1是0的后继者。④0不是任何元素的后继者。 ⑤不同元素有不同的后继者。⑥(归纳公理)N的任一子集M,如果1∈M,并且只要x在M中就能推出x的后继者也在M中,那么M=N。
基数理论则把自然数定义为有限集的基数,这种理论提出,两个可以在元素之间建立一一对应关系的有限集具有共同的数量特征,这一特征叫做基数 。这样 ,所有单元素集{x},{y},{a},{b}等具有同一基数 , 记作1 。类似,凡能与两个手指头建立一一对应的集合,它们的基数相同,记作2,等等 。自然数的加法 、乘法运算可以在序数或基数理论中给出定义,并且两种理论下的运算是一致的。
自然数在日常生活中起了很大的作用,人们广泛使用自然数。
“0”是否包括在自然数之内存在争议,有人认为自然数为正整数,即从1开始算起;而也有人认为自然数为非负整数,即从0开始算起。目前关于这个问题尚无一致意见。不过,在数论中,多采用前者;在集合论中,则多采用后者。目前,我国中小学教材将0归为自然数!
自然数是整数,但整数不全是自然数。
例如:-1 -2 -3......是整数 而不是自然数

全体非负整数组成的集合称为非负整数集(即自然数集)

所谓质数或称素数,就是一个正整数,除了本身和 1 以外并没有任何其他因子。例如 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数或合数。从这个观点可将整数分为两种,一种叫质数,一种叫合成数。(有人认为数目字 1 不该称为质数)着名的高斯“唯一分解定理”说,任何一个整数。可以写成一串质数相乘的积。
第五章:
本章重点:一元一次不等式的解法,
本章难点:了解不等式的解集和不等式组的解集的确定,正确运用
不等式基本性质3。
本章关键:彻底弄清不等式和等式的基本性质的区别.
(1)不等式概念:用不等号(“≠”、“<”、“>”)表示的不 等关系的式子叫做不等式
(2)不等式的基本性质,它是解不等式的理论依据.
(3)分清不等式的解集和解不等式是两个完全不同的概念.
(4)不等式的解一般有无限多个数值,把它们表示在数轴上,(5)一元一次不等式的概念、解法是本章的重点和核心
(6)一元一次不等式的解集,在数轴上表示一元一次不等式的解集
(7)由两个一元一次不等式组成的一元一次不等式组.一元一次不等式组可以由几个(同未知数的)一元一次不等式组成
(8).利用数轴确定一元一次不等式组的解集
第六章:
1.二元一次方程,二元一次方程组以及它的解,明确二元一次方程组的解是一对未知数的值,会检验一对数值是不是某一个二元一次方程组的解.
2.一次方程组的两种基本解法,能灵活运用代入法,加减法解二元一次方程组及简单的三元一次方程组.
3.根据给出的应用问题,列出相应的二元一次方程组或三元一次方程组,从而求出问题的解,并能根据问题的实际意义,检查结果是否合理.
本章的重点是:二元一次方程组的解法——代入法,加减法以及列一次方程组解简单的应用问题.
本章的难点是:
1.会用适当的消元方法解二元一次方程组及简单的三元一次方程组;
2.正确地找出应用题中的相等关系,列出一次方程组.
第七章
本章重点是:整式的乘除运算,特别是对幂的运算及乘法公式的应用要达到熟练程度.
本章难点是:对乘法公式结构特征和公式中字母意义的理解及乘法公式的灵活应用
1.幂的运算性质,正确地表述这些性质,并能运用它们熟练地进行有关计算.
2.单项式乘以(或除以)单项式,多项式乘以(或除以)单项式,以及多项式乘以多项式的法则,熟练地运用它们进行计算.
3.乘法公式的推导过程,能灵活运用乘法公式进行计算.
4.熟练地运用运算律、运算法则进行运算,
5.体会用字母表示数和用字母表示式子的意义.通过式的变形,深入理解转化的思想方法.
第八章:
1、认识事物的几种方法:观察与实验 归纳与类比 猜想与证明 生活中的说理 数学中的说理
2、定义、命题、公理、定理
3、简单几何图形中的推理
4、余角、补交、对顶角
5、平行线的判定
判定:一个公理两个定理。
公理:两直线被第三条直线所截,如果同位角相等(数量关系)两直线平行(位置关系)
定理:内错角相等(数量关系)两直线平行(位置关系)
定理:同旁内角互补(数量关系)两直线平行(位置关系).
平行线的性质:
两直线平行,同位角相等
两直线平行,内错角相等
两直线平行,同旁内角互补
由图形的“位置关系”确定“数量关系”
第九章:
重点:因式分解的方法,
难点:分析多项式的特点,选择适合的分解方法
1. 因式分解的概念;
2.因式分解的方法:提取公因式法、公式法、分组分解法(十字相乘法)
3.运用因式分解解决一些实际问题.(包括图形习题)
第十章:
重点是:用统计知识解决现实生活中的实际问题.
难点是:用统计知识解决实际问题.
1.统计初步的基本知识,平均数、中位数、众数等的计算、
2.了解数据的收集与整理、绘画三种统计图.
3.应用统计知识解决实际问题能解决与统计相关的综合问题.

典型例题从书本上很容易找到。

I. 初一数学上册知识点,思维导图急用

思维导图,也被称为思维导图是一种有效的图形化工具,想表达的推出思想。一种革命性的思维工具。简单但非常有效!思维导图使用的图形并重的技能,和主题的关系,在各级体现相互隶属的层次结构图,主题关键字和图像,色彩,创建一个内存链接,思维导图的左,右大脑充分利用功能,记忆,阅读,思考法律,以帮助人们平衡科学与艺术,逻辑和想象力的发展,从而开启人类大脑的无限潜力。思维导图因此,人的心灵的力量。
?思维导图是一个特定的放射性思维。我们知道,放射性思维是自然的方式思考人的大脑,每一个进入大脑,无论感受,记忆或想法 - 包括文字,数字,符号,食物,香气,线条,色彩,意象,节奏,音符等等,都可以成为一个思考中心,并由此中心向外发散成千上万的关节,每一个关节点代表的中心主题的一个环节,每个环节都可以成为另一个中心主题的向外发散数千关节,这些关节的链接,你的记忆,是你的个人数据库。
人类从出生开始积累这样一个庞大而复杂的数据库惊人的存储容量的大脑,使我们积累了大量的信息,通过思维导图的放射性思维方法,除了加速累积的数据量,数据?是分级分类管理的基础上彼此之间的相关性,因此,数据存储,管理和更系统的应用,提高营运效率的大脑。同时,思维导图是最好用的左脑和右脑的功能,颜色,图像,符号使用,将不仅帮助我们的记忆中,提高我们的创造力,也让心灵更有趣,并且有个人的性格特点和多方面的。
?思维导图的收放自如放射性思维模式的基础上,除了提供一个正确和快速学习的方法和工具使用与创意,项目规划的衔接,解决问题和分析,会议管理,令人惊讶的结果往往。这是表演极端个人智力潜能的方法来提高的思维能力将显着增强记忆力,组织能力和创造力。的飞跃差分法与传统的笔记和学习方法,主要是因为它是从脑生理学的学习互动模式,并进行人类是天生的放射性思维能力和多感官学习特性。
?心灵上图提供一个有效的人类思维的图形化工具,使用图形技术都打开人类大脑的无限潜力。充分利用思维导图的左,右大脑功能,帮助人们科学与艺术,逻辑和想象力之间的平衡。的思维导图完整的逻辑架构和全脑思维,近年来已被广泛应用在世界和中国学习和工作,并显着减少所需的时间耗费和物力资源,每个人或公司业绩大幅增加,不可避免地产生巨大的效益,是不可忽视的。
?思维导图的创始人托尼·巴赞(东尼?博赞),他的大脑先生,国际知名,成为总统的英国头脑基金会,谁是国际奥委会的教练和运动员的顾问,也担任英国奥运赛艇队,国际象棋的顾问团队;被选定为国际心理学家理事会委员会的成员,创作的“精神文化的概念,也是”世界记忆锦标赛协会发起的心理奥运会组织的创始人,致力于帮助那些有学习障碍的人也有标题的世界创造力IQ最高的。截至1993年,托尼·巴赞已经出版了20本书,其中包括19专论的思想,创造力和学习,以及一本诗集。

J. 初一数学知识点梳理

第一章有理数总复习

一、知识归纳:

1、数轴是一条规定了原点、方向、长度单位的直线。有了数轴,任何一个有理数都可以用它上面的一个确定的点来表示。在数的研究上它起着重要的作用。它使数和最简单的图形——直线上的点建立了对应关系,它揭示了数和形之间的内在关系,因此它是数形结合的基础。但要注意数轴上的所有点并不是都有有理数和它对应。借助于数轴上点的位置关系可以比较有理数的大小,法则是:在数轴上表示的两个有理数,右边的数总比左边的数大。

2、相反数是指只有符号不同的两个数。零的相反数是零。互为相反的两个数位于数轴上原点的两边,离开原点的距离相等。有了相反数的概念后,有理数的减法运算就可以转化为加法运算。

3、绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。显然有:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。对于任何有理数a,都有≥0。

4、倒数可以这样理解:如果a与b是非零的有理数,并且有a×b=1,我们就说a与b互为倒数。有了倒数的概念后,有理数的除法运算就可以转化为乘法运算。

5、有理数的大小比较:

(1)正数都大于零,负数都小于零,即负数<零<正数;(2)两个正数,绝对值大的数较大;

(3)两个负数,绝对值大的数反而小;(4)在数轴上表示的有理数,右边的数总比左边的大;

6、科学记数法:是指任何数记成a×10n的形式,其中用式子表示|a|的范围是0<|a|<10。

7、近似数与有效数字:

近似数:一个与实际数很接近的数,称为近似数;

有效数字:从左边第一个不为0的数字起,到精确到的数位止,这些数字都是这个数的有效数字。

(1)有效数字越多,近似数就越精确;(2)由四舍五入得到的近似数0.003206,左边第一个不是零的数是3,最后一位四舍五入所得到的数是6,从3到6中间的所有的数字是3、2、0、6,左边的三个不算,但2和6之间的0要算,这个近似数有4个有效数字。

二、有理数的运算法则

1、有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。由此可得,互为相反数的两数相加的0;三个数相加先把前两个数相加,或先把后两个数相加,和不变。

2、有理数的减法法则:减去一个数等于加上这个数的相反数。注意:一切加法和减法运算都可以统一成加法运算。

3、有理数的乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。任何数同零相乘都得零。

4、有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除。零除以任何一个不为零的数都得零。

5、有理数混合运算的顺序:有理数混合运算中,先算乘方,再算乘除,最后算加减。运算中,如果有括号,就先算括号里面的。、

6、有理数的运算律:

交换律:a+b=b+a,ab=ba.

结合律:(a+b)+c=a+(b+c),(ab)c=a(bc).

乘法对加法的分配律:a(b+c)=ab+ac.

三、值得注意的几个问题

1、数的范围扩大到有理数后,一定要注意考虑负数。如不能认为“最小的整数是零”。

2、有理数都可以用数轴上的点表示;但数轴上的点不都表示有理数。

3、单独的一个数或字母,省略的指数是“1”,而不是零。

4、对负数或分数进行乘方运算要注意加括号。如当时,;而不是。

5、有理数的运算要特别注意符号。

第二章整式的加减

一、 知识梳理

1、______和______统称整式。

①单项式:由与的乘积式子称为单项式。单独一个数或一个字母也是单项式,如a,5。

•单项式的系数:单式项里的叫做单项式的系数。

•单项式的次数:单项式中叫做单项式的次数。

②多项式:几个的和叫做多项式。其中,每个单项式叫做多项式的,不含字母的项叫做。

•多项式的次数:多项式里的次数,叫做多项式的次数。

•多项式的命:一个多项式含有几项,就叫几项式。所以我们就根据多项式的项数和次数来命名一个多项式。如:3n4-2n2+1是一个四次三项式。

2、同类项——必须同时具备的两个条件(缺一不可):

①所含的相同;

②相同也相同。

•合并同类项,就是把多项式中的同类项合并成一项。

方法:把各项的相加,而不变。

3、去括号法则

法则1.括号前面是“+”号,把括号和它前面的“+”号去掉,

括号里各项都符号;

法则2.括号前面是“-”号,把括号和它前面的“-”号去掉,

括号里各项都符号。

▲去括号法则的依据实际是。

〖注意1〗要注意括号前面的符号,它是去括号后括号内各项是否变号的依据.

〖注意2〗去括号时应将括号前的符号连同括号一起去掉.

〖注意3〗括号前面是“-”时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.若括号前是数字因数时,可运用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.

〖注意4〗遇到多层括号一般由里到外,逐层去括号,也可由外到里.数“-”的个数.

4、整式的加减

整式的加减的过程就是。如遇到括号,则先,再,合并到为止。

5、本单元需要注意的几个问题

①整式(既单项式和多项式)中,分母一律不能含有字母。

②π不是字母,而是一个数字,

③多项式相加(减)时,必须用括号把多项式括起来,才能进行计算。

④去括号时,要特别注意括号前面的因数。

第三章一元一次方程

一、 知识梳理

1.方程

(1)方程的定义:含有未知数的等式叫做方程.

(2)方程的解:能够使方程左、右两边的值相等的未知数的值叫做方程的解.

(3)解方程:求方程解的过程叫做解方程.

2.一元一次方程:

只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程.

3.解一元一次方程的步骤:

①去分母,在方程的两边都乘以各分母的最小公倍数,注意不要漏乘不含分母的项,分子为多项式的要加上括号;

②去括号,一般先去小括号,再去中括号,最后去大括号,注意不要漏乘括号里的项,当括号前是“-”时,去掉括号时注意括号内的项都要变号;

③移项,将含有未知数的项移到方程的一边,不含未知数的项移到方程的另一边,注意移项要变号,移项和交换位置不同;

④合并同类项,将同类项合并成一项,把方程化为ax=b(a≠0)的形式,注意只合并同类项的系数;

⑤系数化为1,在方程ax=b的两边都除以a,求出方程的解x=,注意符号,不要把方程ax=b的解写成x=。

4.列方程解应用题的步骤:

(1)读题找相等关系:认真读题,理解题意,分清已知与未知,找出相等关系.

(2)设出适当的未知数:根据问题的实际情况,设未知数可以直接设未知数,也可以间接设未知数.

(3)列方程:根据问题中的一个相等关系列出方程.

(4)解方程:解所列的方程,求出未知数的值.

(5)写出所求解的答案:求到方程的解,要检验它是否符合实际意义,如果符合实际意义,要写出完整的答案.

5.实际问题的常见类型

(1)利息问题:①相关公式:本金×利率×期数=利息(未扣税);②相等关系:本息=本金+利息.

(2)利润问题:①相关公式:利润率=利润÷进价;②相等关系:利润=售价-进价.

(3)等积变形问题:①相关公式:长方体的体积=长×宽×高;圆柱的体积=底面积×高.

②相等关系:变形前的体积=变形后的体积.

(4)工程问题

①数量关系:工作量=工作时间×工作效率.②相等关系:总工作量=各部分工作量的和.

(5)行程问题:①相关数量关系:路程=时间×速度;②相等关系:(相遇问题)两者路程和=总路程;(追及问题)两者路程差=相距路程.

二、思想方法总结

1.方程的思想:方程的思想就是把末知数看成已知数,让代替未知数的字母和已知数一样参与运算,这是一种很重要的数学思想,很多问题都能归结为方程来处理。

2、数形结合的思想:数形结合的思想是指在研究问题的过程中,由数思形,由形思数,把数和形结合起来分析问题的思想方法。本章在列方程解应用题时常采用画图,列表格的方法展示数量关系。使问题更形象、直观。

3、“化归思想”:所谓化归思想,是指在如解数学问题时,如果对当前的问题感到困惑,可把它先进行交换,使之筒化,并得到解决的思维方法。如本章解方程的过程,就是把形式比较复杂的方程,逐步化简为最简方程ax=b(a=0),从而求出方程的解,通过对解一元一次方程的学习要体会并掌据化归这一数学思想方法。

三、易错点突破

1、应用等式的基本性质时出现错误

例1下列说法正确的是()

A、在等式ab=ac中,两边都除以a,可得b=c

B、在等式a=b两边都除以c2+1可得

C、在等式两边都除以a,可得b=c

D、在等式2x=2a一b两边都除以2,可得x=a一b

剖析:A中a代表任意数,当a≠0时结论成立;但当a=0时,不能运用等式的性质(2)结论不一定成立,如0•3=0•(-1)但3≠-1,所以,等式两边同时除以一个数,要保证除数不为0才能行。B中c2+1≠0所以成立C用的性质错误,应在等式两边都乘以a,D中一b这一项没除以2,应为x=a-选B

2、去分母去括号时出现漏乘现象或出现符号错误;移项不变号,错把解方程的过程写成“连等”的形式。

例2解方程.

错解:=3x-2+10=x+6=2x=-2=x=-1

剖析:错解的原因是对方程的变形理解不深,受到代数式运算时使用连等式的习惯影响。

正解:去分母得3x-2+10=x+6

移项合并同类项得2x=-2,所以x=-1

3、列方程解应用题时常出现的错误

(1)审题不清,没有弄请各个量所表示的意义;

(2)列方程出现错误

(3)应用公式错误

(3)单住不统一

(4)计算方法出现错误。

第四章图形认识初步

一、 知识梳理

二、重点、难点:

立体图形与平面图形的互相转化,及一些重要的概念、性质等是本章的重点。

建立和发展空间观念是空间与图形学习的核心目标之一,能由实物形状想象出几何图形,由几何图形想象出实物形状,进行几何体与其三视图、展开图之间的相互转化是培养空间观念的重要方面。另外,对图形的表示方法,对几何语言的认识与运用,都要有一个熟悉的过程。等等这些,对于今后的学习都很重要,同时也是本章的难点。

三、知识要点:

本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形。通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系。在此基础上,认识一些简单的平面图形——直线、射线、线段和角。

1.多姿多彩的图形:通过多姿多彩的图形引入几何图形,使我们认识立体图形、平面图形,通过三视图我们可以把立体图形转化为平面图形来研究和处理,也可以把立体图形展开为平面图形;几何体也简称为体,包围体的是面,面面相交为线,线线相交为点;点动成线,线动成面,面动成体,几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。如广场礼花在夜空中留下的图形,你是否看到了点动成线?在电视中看到收割机在麦田中收割小麦,你是否看到了线动成面?

2.直线、射线、线段的区别与联系:从图形上看,直线、射线可以看做是线段向两边或一边无限延伸得到的,或者也可以看做射线、线段是直线的一部分;线段有两个端点,射线有一个端点,直线没有端点;线段可以度量,直线、射线不能度量。

3.直线、线段性质:

经过两点有一条直线,并且只有一条直线;或者说两点确定一条直线;

两点的所有连线中,线段最短;简单说:两点之间,线段最短。

4.线段中点:把一条线段分成两条相等的线段的点叫线段中点,如图:

若点C是线段AB的中点,则有(1)AC=BC=AB或(2)AB=2AC=2BC,反之,若有(1)式或(2)式成立,亦能说明点C是线段AB的中点。

5.关于线段的计算:两条线段长度相等,这两条线段称为相等的线段,记作AB=CD,平面几何中线段的计算结果仍为一条线段。即使不知线段具体的长度也可以作计算。

例:如图:AB+BC=AC,或说:AC-AB=BC

6.角的意义:有公共端点的两条射线组成的图形叫做角,公共端点是角的顶点,这两条射线是角的两条边,角也可以看做由一条射线绕着它的端点旋转而形成的图形。

7.角的度量:1°=60′1′=60″1周角=360°1平角=180°1直角=90°

8.角的大小的比较:(1)叠合法,使两个角的顶点及一边重合,另一边在重合边的同旁进行比较;(2)度量法。

9.角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。如图:OC平分∠AOB,则(1)∠AOC=∠BOC=∠AOB或(2)2∠AOC=2∠BOC=∠AOB。

10.有关角的运算:

举例说明:如图,∠AOC+∠BOC=∠AOB,∠AOB-∠AOC=∠BOC

特殊情况,如果两个角的和等于直角,就说这两个角互为余角,即其中一个是另一个的余角;如果两个角的和等于平角,就说这两个角互为补角,即其中一个是另一个的补角;等角的余角相等,等角的补角相等。