1. 求高等数学下知识点总结
2. 高等数学知识点
偏导数我没看,一点处可导左右临域导数相等便可,如果一点连续,则左右取极限分别相等且等于这一点的函数值则连续,可导推出连续,连续推不出来可导,但是不连续必然不可导!
3. 谁知道高等数学下的重点知识点就是必须要会那些求大神!!!【能及格就行!!!】
这个不同的学校考试范围不同的,一般老师会划重点。没有的话就问问同校的,总有老师划了。
4. 大一高数知识点归纳是什么
大一高数知识点归纳是:
一、集合间的基本关系
1、“包含”关系—子集。注意:有两种可能(1)A是B的一部分;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA。
2、“相等”关系:A=B (5≥5,且5≤5,则5=5)。
实例:设A={x|x2-1=0} B={-1,1}“元素相同则两集合相等”。即:①任何一个集合是它本身的子集。AA②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)。③如果AB,BC,那么AC。④如果AB同时BA,那么A=B。
3、不含任何元素的集合叫做空集,记为Φ。
规定:空集是任何集合的子集,空集是任何非空集合的真子集。有n个元素的集合,含有2n个子集,2n-1个真子集。
二、集合及其表示
1、集合的含义:
“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。
所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
2、集合的表示:
通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作dA。
有一些特殊的集合需要记忆:非负整数集(即自然数集)N正整数集N*或N+,整数集Z有理数集Q实数集R,集合的表示方法:列举法与描述法。
①列举法:{a,b,c……};②描述法:将集合中的元素的公共属性描述出来。如{xR| x-3>2},{x| x-3>2},{(x,y)|y=x2+1};③语言描述法:例:{不是直角三角形的三角形};
例:不等式x-3>2的解集是{xR|x-3>2}或{x|x-3>2};
A={(x,y)|y= x2+3x+2}与B={y|y= x2+3x+2}不同。集合A中是数组元素(x,y),集合B中只有元素y。
3、集合的三个特性
(1)无序性
指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。
例题:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:A=B
注意:该题有两组解。
(2)互异性
指集合中的元素不能重复,A={2,2}只能表示为{2}。
(3)确定性
集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。
三、集合间的基本关系
1、子集,A包含于B,有两种可能
(1)A是B的一部分。
(2)A与B是同一集合,A=B,A、B两集合中元素都相同。
反之:集合A不包含于集合B,记作。
如:集合A={1,2,3 },B={1,2,3,4},C={1,2,3,4},三个集合的关系可以表示为B=C。A是C的子集,同时A也是C的真子集。
2、真子集:如果AB,且A B那就说集合A是集合B的真子集,记作AB(或BA)。
3、不含任何元素的集合叫做空集,记为Φ。Φ是任何集合的子集。
4、有n个元素的集合,含有2n个子集,2n -1个真子集,含有2n -2个非空真子集。如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。
例:集合共有个子集。
练习:A={1,2,3},B={1,2,3,4},请问A集合有多少个子集,并写出子集,B集合有多少个非空真子集,并将其写出来。
解析:
集合A有3个元素,所以有23=8个子集。分别为:①不含任何元素的子集Φ;②含有1个元素的子集{1}{2}{3};③含有两个元素的子集{1,2}{1,3}{2,3};④含有三个元素的子集{1,2,3}。
集合B有4个元素,所以有24-2=14个非空真子集。具体的子集自己写出来。
5. 大一高数下册知识点
见泰勒展开式
x变为-x。
6. 大一高等数学知识点有哪些
大一高等数学知识点有:
1、全体有理数组成的集合叫做有理数集,记作Q。
2、将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是域函数表格法。
3、我们最常用的有五种基本初等函数,分别是:指数函数、对数函数、幂函数、三角函数及反三角函数。
4、函数的定义是如果当变量x在其变化围任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。变量×的变化围叫做这个函数的定义域。
5、单调有界的函数必有极限,有极限的函数不一定单调有界。
7. 大一高数知识点归纳有哪些
大一高数知识点归纳如下:
第一章:
1、极限(夹逼准则)。
2、连续(学会用定义证明一个函数连续,判断间断点类型)。
第二章:
1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续。
2、求导法则(背)。
3、求导公式 也可以是微分公式。
第三章:
1、微分中值定理(一定要熟悉并灵活运用第一节)。
2、洛必达法则 。
3、泰勒公式 拉格朗日中值定理。
4、曲线凹凸性、极值(高中学过,不需要过多复习)。
5、曲率公式 曲率半径。
第四章、第五章,积分,不定积分:
1、两类换元法。
2、分部积分法 (注意加C )。
3、定积分,定义。反常积分。
第六章:
定积分的应用。主要有几类:极坐标、求做功、求面积、求体积、求弧长。
第七章:
1、方向余弦。
2、向量积。
3、空间直线(两直线的夹角、线面夹角、求直线方程)。
4、空间平面 。
5、空间旋转面(柱面)。
8. 高数下册主要学些什么哪些是重点
下册学的是向量和空间解析几何,这个很简单,是重点不是难点,重点难点在偏导数
全微分和二重积分三重积分的求法和相关面积体积的计算,还有一型二型曲线积分和曲面积分的求法与计算,级数里有正向级数审敛法,幂级数和傅里叶级数,这些都是考试的重点和难点。
纯手打、绝无抄袭~~