1. 初一的数学有哪些知识点
第五章 平等线与相交线
1、同角或等角的余角相等,同角或等角的补角相等。
2、对顶角相等
3、判断两直线平行的条件:
1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。 3)同旁内角互补,两直线平行。 (4)如果两条直线都和第三条直线平行,那么这两面三刀条直线也互相平行。
4、平行线的特征:
(1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。 (3)同旁内角互补,两直线平行。
5、命题:
⑴命题的概念:
判断一件事情的语句,叫做命题。
⑵命题的组成
每个命题都是题设、结论两部分组成。题设是已知事项;结论是由已知事项推出的事项。命题常写成“如
果……,那么……”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。
6、平移
平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移,平移不改变物体的形状和大小。
(1) 把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
(2) 新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。连接各组对应点的线段平行且相等。
第六章 平面直角坐标系
1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)
2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。
3、在平面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。平面直角坐标系有两个坐标轴,其中横轴为X轴,取向右方向为正方向;纵轴为Y轴,取向上为正方向。坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点。X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般情况下,x轴和y轴取相同的单位长度。
3、特殊位置的点的坐标的特点:
(1).x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
(2).第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
(3).在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
4.点到轴及原点的距离
点到x轴的距离为|y|; 点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;
在平面直角坐标系中对称点的特点:
关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。
2.关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。
3关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。
各象限内和坐标轴上的点和坐标的规律:
第一象限:(+,+) 第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)
x轴正方向:(+,0)x轴负方向:(-,0)y轴正方向:(0,+)y轴负方向:(0,-)
x轴上的点纵坐标为0,y轴横坐标为0。
第七章 三角形
1、三角形任意两边之和大于第三边,确形任意两边之差小于第三边。
2、三角形三个内角的和等于180度。
3、直角三角形的两个锐角互余
4、三角形的三条角平分线交于一点,三条中线交于一点;三角形的三条高所在的直线交于一点。
5、直角三角形全等的条件:
斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。
(只要有任意两条边相等,这两个直角三角形就全等)。
6、三角形全等的条件:
(1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
(2)两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。
(3)两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。
(4)两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。
27、等腰三角形的特征:
(1) 有两条边相等的三角形叫做等腰三角形;
(2) 等腰三角形是轴对称图形;
(3) 等腰三角形顶角的平分线、底边上的中线、底边上的重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴。
(4)等腰三角形的两个底角相等。
(5)等腰三角形的底角只能是锐角。
2. 初一下数学知识点有哪些
初一下数学知识点如下:
1、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
2、两条平行线被第三条直线所截,同旁内角互补(两直线平行,同旁内角互补)。 判断一件事情的语句,叫做命题。
3、无限不循环小数又叫做无理数。
4、规定了原点、正方向、单位长度的直线叫做数轴。
5、减去一个数,等于加这个数的相反数。
3. 初一上学期数学知识点归纳有哪些
正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。
有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)。
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
图形认识初步
几何体也简称体(solid)。包围着体的是面(surface)。
直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度 。
角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。
4. 初一数学学哪些知识点
tij
5. 初一数学知识点有哪些
初一数学知识点:
一、不等式
1、用小于号或大于号表示大小关系的式子,叫做不等式。
2、使不等式成立的未知数的值叫做不等式的解。
3、能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集。
4、有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
二、平方根
1、如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根,2是根指数。
2、a的算术平方根读作“根号a”,a叫做被开方数。
3、0的算术平方根是0。
4、如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。
5、求一个数a的平方根的运算,叫做开平方。
三、立方根
1、如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根。
2、求一个数的立方根的运算,叫做开立方。
四、垂线
1、当两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
2、由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。
3、垂线段是垂线上的一部分,它是线段,一端是一个点,另一端是垂足。
6. 初一数学有哪些知识点
一:有理数
知识网络:
概念、定义:
1、大于0的数叫做正数(positive number)。
2、在正数前面加上负号“-”的数叫做负数(negative number)。
3、整数和分数统称为有理数(rational number)。
4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
5、在直线上任取一个点表示数0,这个点叫做原点(origin)。
6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。
7、 由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8、正数大于0,0大于负数,正数大于负数。
9、两个负数,绝对值大的反而小。
10、有理数加法法则
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13、有理数减法法则
减去一个数,等于加上这个数的相反数。
14、有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
15、有理数中仍然有:乘积是1的两个数互为倒数。
16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17、 三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18、 一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19、有理数除法法则
除以一个不等于0的数,等于乘这个数的倒数。
20、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
21、 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an 中,a叫做底数(basenumber),n叫做指数(exponeht)
22、根据有理数的乘法法则可以得出
负数的奇次幂是负数,负数的偶次幂是正数。
显然,正数的任何次幂都是正数,0的任何次幂都是0。
23、做有理数混合运算时,应注意以下运算顺序:
(1)先乘方,再乘除,最后加减;
(2) 同级运算,从左到右进行;
(3) 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
24、把一个大于10数表示成a×10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。
25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字
7. 初一数学知识要点有哪些
初一数学概念
实数:
—有理数与无理数统称为实数。
有理数:
整数和分数统称为有理数。
无理数:
无理数是指无限不循环小数。
自然数:
表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。
数轴:
规定了圆点、正方向和单位长度的直线叫做数轴。
相反数:
符号不同的两个数互为相反数。
倒数:
乘积是1的两个数互为倒数。
绝对值:
数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。
数学定理公式
有理数的运算法则
⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
⑵减法法则:减去一个数,等于加上这个数的相反数。
⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线。
数学第一章相交线
一、邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角。邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角。
二、对顶角:是两条直线相交形成的。两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”。
对顶角的性质:对顶角相等。
三、垂直
1、垂直:两条直线所成的四个角中,有一个是直角时,就说这两条直线互相垂直。其中一条叫做另一条的垂线,它们的交点叫做垂足。记做a⊥b
垂直是相交的一种特殊情形。
2、垂线的性质:
①过一点有且只有一条直线与已知直线垂直;
②连接直线外一点与直线上各点的所有线段中,垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
3、画法:①一靠(已知直线)②二过(定点)③三画(垂线)
4、空间的垂直关系
四、平行线
1、 平行线:在同一平面内,不相交的两条直线叫做平行线。记做a‖b
2、 “三线八角”:两条直线被第三条直线所截形成的
① 同位角:“同方同位”即在两条直线的上方或下方,在第三条直线的同一侧。
② 内错角:“之间两侧”即在两条直线之间,在第三条直线的两侧。
③ 同旁内角“之间同旁”即在两条直线之间,在第三条直线的同旁。
3、 平行公理:经过直线外一点,有且只有一条直线与这条直线平行
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
4、 平行线的判定方法
① 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;
② 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;
③ 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;
④ 平行于同一条直线的两条直线平行;
⑤ 垂直于同一条直线的两条直线平行。
5、 平行线的性质:
①两条平行线被第三条直线所截,同位角相等;
②两条平行线被第三条直线所截,内错角相等;
③两条平行线被第三条直线所截,同旁内角互补。
6、 两条平行线的距离:同时垂直于两条平行线并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离。
7、 命题:判断一件事情的语句,叫做命题,由题设和结论两部分组成。
五平移
1、平移:在平面内将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
说明:①、平移不改变图形的形状和大小,改变图形的位置;②“将一个图形沿某个方向移动一定的距离”意味着“图形上的每一点都沿着同一方向移动了相同的距离 ”这也是判断一种运动是否为平移的关键。③图形平移的方向,不一定是水平的
2、平移的性质:经过平移,对应线段、对应角分别相等,对应点所连的线段平行且相等。 初一数学知识点归纳 第一单元 位置1、 能在具体的情景中,确定位置的方法,说出某一物体的位置。2、 用“数对”表示位置,对应列上的数字在前,行上的数字在后,记为(x,y)。3、 “数对”表示位置,易错的是(x,0),(0,y)。4、 认识方位,上北下南左西右东,两个事物一个在另一个的方向。 第二单元 分数乘法一、分数乘整数1、 意义:表示几个相同分数相加。2、 计算方法:(1)、分母不变,分子和整数相乘。 (2)、当分母和整数可以约分时,要先约分。二、分数乘分数1、意义:就是一个分数的几分之几。2、计算方法:(1)、分子乘分子,分母乘分母。。 (2)、分子和分母有能约分的要约分,再计算。三、运算律的运用1、整数乘法的运算律对于分数乘法同样适用。2、应用运算律简便计算。四、倒数1、乘积是1的两个数互为倒数。2、求法:把数的分子和分母的位置颠倒。3、1的倒数就是1本身,0没有倒数。五、解决问题1、求一个数的几分之几。列式:标准量×几分之几2、求一个数多(或少)几分之几。列式:标准量×(1±几分之几) 标准量土标准量×几分之几3、 求一个数占另一个数的几分之几。列式:几分之几4、 用画线段图分析分数乘法应用题的数量关系。 第三单元 分数除法一、 类型1、 分数除以整数,表示把分数平均分成整数份。2、 分数除以分数,表示b/a中有多少个d/c。3、 整数除以分数,表示a中有多少个c/d。二、 计算方法:除以一个数等于乘这个数的倒数(0除外)。三、 分数除法的意义与整数除法相同,都是乘法的逆运算。四、 分数混合运算顺序,简便算法。五、 解决问题1、 甲数是乙数的几分之几。列式:甲/乙。2、 乙数的几分之几等于甲数。列式:甲数=乙数×几分之几。乙数=甲数÷几分之几。3、 甲数比乙数多(或少)几分之几。列式:甲数=乙数×(1土几分之几)甲数=乙数土乙数×几分之几。标准量:“比”字后面的为标准量。4、 若求长方形的长是宽的几倍:就是求长和宽的比:长/宽。若求长方形的宽是长的几分之几,就是求长和宽的比:长/宽。六、 比的意义:用两个数相除,又叫两个数的比,符号“:”比的结果叫做比值。1、 在a:b中,a叫比的前项,b叫比的后项。2、 比与除法和分数的关系。a:b=a÷b=a/b。3、 求比值两项的单位名称要统一,比值是一个数,没有单位。4、 比的基本性质a:b=am:bma:b=a÷m:b÷m5、 比化成最简整数比:(1) 有分数,前项和后项都乘分母的最小公倍数。(2) 无分数,前项和后项都除以最大公约数。(3) 有小数,可先化为整数或分数。6、解决问题总量×被分份数/总份数=要求的量 第四单元圆一、 圆的认识,由曲线围成,外形美,易滚动。1、 圆心,用o表示。2、 半径,连接圆心和圆上任意一点的线段叫半径,用r表示。3、 直径,通过圆心并且两端都在圆上的线段叫直径,用d表示。4、 半径和直径的关系。5、 轴对称图形及对称轴,圆又无数条对称轴,是直径所在的直线。二、 圆的周长1、 圆周率,是周长与直径的比,是无限不循环小数。2、 公式:c=πd或c=2πr3、 已知圆的周长求半径和直径。三、 圆的面积1、公式S=πR22、已知圆的半径、直径或周长能分别求圆的面积。3、环形面积公式S=πR2-πr24、扇形、弧、圆心角。5、在周长一定的情况下,圆的面积最大。在面积一定的情况下,圆的周长最短。6、 确定起跑线的位置。 第五单元百分数1、 百分数的写法。百分号“%”2、 百分数的意义:表示一个数是另一个数的百分之几。3、 百分数与分数的区别:分数既可以表示一个具体的数,又可以表示两个数之间的关系。百分数表示一个数是另一个数的百分之几,只表示两个数的关系,不是具体的数,不能写单位名称。另外百分数的分子可以是小数和大于一百的数。4、 百分数与分数、小数的互化。百分数化为小数:去掉百分号,小数点向左移动两位;小数化为百分数:小数点向右移动两位,添上百分号;百分数化为分数:可先化为分母是一百的分数,能约分的要约分;分数化为百分数:先把分数化为小数,再化为百分数。5、解决问题①、达标率,发芽率的公式。(甲占乙的百分之几。)达标率=达标的人数/总人数×100%发芽率=发芽的数量/种子的总数×100%②、甲比乙少(或多)百分之几。确定单位“1”。③、甲增加了百分之几是多少?增加了多少?6、折扣,表示十分之几,也就是百分之几十。折扣问题求实求一个数的百分之几是多少的问题。7、纳税。①、根据国家各种税法的规定,按照一定的比率,把集体或个人的收入的一部分缴纳给国家叫做纳税。②、缴纳的税款叫做应纳税额。按一定的比率纳税叫做税率。③、税率=应纳税款/各种收入×100%应纳税款=税率×各种收入。8、利率。①、存款的好处。②、利息=本金×利率×时间③、取款=本金+利息-利息税(本金+税后利息)。 第六单元统计一、 扇形统计图1、 能反映部分量同总量之间的关系2、 用整个圆表示总量,用各个扇形表示各部分数量占总量的百分之几。3、 利用扇形统计图计算分析。二、 合理存款1、 教育储蓄。2、 国债利率3、 设计存款方案4、 合理存款 第七单元数学广角鸡兔同笼问题利用解方程的方法解决问题。
8. 初一数学的知识点
不同版本学的内容不同,你学的什么版本?至于学的哪些知识点,你看一下目录就明白了。
9. 初一数学到底有哪些重要重要的知识点
代数初步知识
1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.
2.列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用“• ” 乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“• ”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a× 应写成 a;
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成 的形式;
(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .
3.几个重要的代数式:(m、n表示整数)
(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;
(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;
(4)若b>0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .
有理数
1.有理数:
(1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;
(2)有理数的分类: ① ②
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数 0和正整数;a>0 a是正数;a<0 a是负数;
a≥0 a是正数或0 a是非负数;a≤ 0 a是负数或0 a是非正数.
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
(3)相反数的和为0 a+b=0 a、b互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨论;
(3) ; ;
(4) |a|是重要的非负数,即|a|≥0;注意:|a|•|b|=|a•b|, .
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么 的倒数是 ;倒数是本身的数是±1;若ab=1 a、b互为倒数;若ab=-1 a、b互为负倒数.
7. 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
10 有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
11 有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .
10. 初一数学全部知识点分别是
初一数学知识点:
1、单项式:数字与字母的积,叫做单项式。
2、多项式:几个单项式的和,叫做多项式。
3、整式:单项式和多项式统称整式。
4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。
5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。
6、余角:两个角的和为90度,这两个角叫做互为余角。
7、补角:两个角的和为180度,这两个角叫做互为补角。
8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。
9、同位角:在“三线八角”中,位置相同的角,就是同位角。
10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。
11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。
12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。
13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。
14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。
17、全等图形:两个能够重合的图形称为全等图形。
18、变量:变化的数量,就叫变量。