当前位置:首页 » 基础知识 » 8年级上册数学知识点
扩展阅读
传承经典古诗有哪些 2025-01-08 23:16:05
有高肉动漫有哪些 2025-01-08 23:10:09

8年级上册数学知识点

发布时间: 2022-03-05 14:51:19

1. 八年级上册数学知识点归纳、总结 人教版、

一.整式
1.1:加减
1.2:乘法
1.3:公式:1.平方差
2.完全平方
1.4:除法
1.5:因式分解
二.分式
2.1:定义
2.2:运算
2.3:方程
三.反比例函数
3.1:定义
3.2:利用反比例函数解决实际问题
四.轴对称
4.1:定义
4.2:轴对称变换
4.3:等腰三角形
五.总复习
回答者: 郑长春123 - 门吏 二级 2-15 14:09
=======================================================
知 识 点 能力要求 了解 理解 掌握 应用 轴对称图形、轴对称的概念 √ 轴对称图形的对称轴及轴对称的对称轴、对称点 √ 轴对称图形与轴对称的区别和联系 √ 线段垂直平分线的定义和性质 √ 成轴对称的两个图形的性质 √ 利用轴对称的性质作简单的轴对称 √ 利用轴对称进行图案设计 √ 对称图案中颜色的对称 √ 利用网格设计轴对称图案 √ 线段是轴对称图形 √ 线段的垂直平分线的性质 √ 角是轴对称图形 √ 角平分线的性质 √ 等腰三角形的轴对称性 √ 等腰三角形的性质 √ √ 等腰三角形三线合一的性质 √ 运用等腰三角形的性质解决问题 √ 等边三角形及直角三角形的性质 √ 梯形及等腰梯形的概念 √ 梯形及等腰梯形的性质 √ 梯形辅助线的几种作法 √ 等腰梯形同一底上的两个内角相等、两条对角线相等 √ 等腰梯形是轴对称图形 √ 等腰梯形的判定 √ 苏科版八年级数学(上)知识点系目表 2008.9 勾股定理 √ 面积法证明勾股定理 √ 直角三角形的判定条件 √ 利用直角三角形的判定条件判定三角形 √ 勾股定理的实际应用 √ 勾股数的概念 √ 平方根的概念 √ 求一个非负数的平方根 √ 平方根的性质 √ 开平方的概念 √ , √ 立方根的概念 √ 求一个实数的立方根 √ 立方根的性质 √ 开立方的概念 √ 无理数、实数的概念 √ 实数的分类 √ 实数的大小比较 √ 用计算器计算 √ 实数范围内的运算 √ 近似数的概念 √ 根据要求取近似数 √ 有效数字的概念 √ 1.旋转的基本性质。 √ 2.按要求作出简单的平面图形通过旋转后的形 √ 3.中心对称及中心对称图形的有关概念和性质 √ 4.画出已知图形成中心对称,会设计中心对称案 √ 5.平行四边形的性质; √ 6.运用平行四边形的性质解决实际问题 √ 7.平行四边形的判定方法 √ 8.运用平行四边形的判定和性质解决实际问题; √ 9矩形、菱形、正方形的概念及其特殊的性质。 √ 10.矩形、菱形、正方形的判断方法,运用矩形、菱形、正方形的判定和性质解决实际问题 √ 11.三角形中位线概念、性质. √ 12.会利用三角形的中位线的性质解决有关问题. √ 13.梯形的中位线的概念和性质; √ 14.能应用梯形的中位线的性质解决有关问题 √ 15.理解镶嵌的意义,进行简单的镶嵌设计 √ 1、感受可以用多种方法记录、描绘后表示变化的数量及变化规律 √ 2、能根据图表所提供的信息,探索数量变化的某些联系 √ 3、会描述物体运动的路径 √ 4、能根据经纬度确定移动物体位置变化的路径 √ 5、会用变化的数量描绘物体位置的变化 √ 6、领会实际模型中确定位置的方法,会正确画出平面直角坐标系 √ 7、在给定的直角坐标系中,根据点的坐标描出点的位置 √ 8、在给定的直角坐标系中,会由点的位置写出点的坐标 √ 9、在同一直角坐标系中,探索位置变化与数量变化的关系 √ 10、在同一直角坐标系中,探索图形位置的变化与点的坐标变化的关系 √ 11、能建立适当直角坐标系,将实际问题数学化,并会用直角坐标系解决问题 √ 常量、变量意义 √ 函数概念和三种表示方法 √ 结合图象分析实际问题中的函数关系 √ 确定自变量的取值范围 √ 求函数值 √ 正比例函数概念 √ 一次函数概念 √ 根据已知条件确定一次函数解析式 √ 会画一次函数图象 √ 正比例函数图象性质 √ 一次函数图象性质 √ 一次函数图象的性质(k>0或k<0图象的变化) √ 直线在平面直角坐标系中的平移 √ 直线与直线的对称 √ 直线的旋转 √ 平面直角坐标系中的面积 √ 一次函数解决实际问题 √ 对变量的变化规律进行初步预测 √ 图象发求二元一次方程组的解 √ 1.算术平均数和加权平均数的意义。 √ 2.求一组数据的算术平均数和加权平均数。 √ 3.权的差异对平均数的影响。 √ 4.算术平均数与加权平均数的联系与区别。 √ 5.利用算术平均数和加权平均数解决实际问题。 √ 6.中位数和众数代表的概念。 √ 7.根据所给的信息求出一组数据的中位数、众数。 √ 8.平均数、中位数、众数的区别与联系。 √ 9选择合适的统计量表示数据的集中程度。 √ 10.利用计算器求一组数据的平均数。 √ 11.经历数据的收集、加工、整理和描述的统计过程,提高数据处理能力,发展统计意识。 (去买本老师用书)

给些例题
小结
例题:
1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y是x的函数。
注意:(1)k≠0,否则自变量x的最高次项的系数不为1;
(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:一次函数的图象是一条直线
(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(- ,0)。

(2)正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0)的图象是经过(- ,0)和(0,b)的一条直线。

(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。
3、一次函数图象的性质:
(1)图象在平面直角坐标系中的位置:

(2)增减性:

k>0时,y随x增大而增大;
k<0时,y随x增大而减小。
4、求一次函数解析式的方法
求函数解析式的方法主要有三种:
一是由已知函数推导,如例题1;
二是由实际问题列出两个未知数的方程,再转化为函数解析式,如例题4的第一问。
三是用待定系数法求函数解析式,如例2的第二小题、例7。
其步骤是:①根据题给条件写出含有待定系数的解析式;②将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程,得到待定系数的具体数值;④将求出的待定系数代入要求的函数解析式中。
二、例题举例:
例1、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。
分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x的关系。
解:∵ y=2y1
y1=3x+2,
∴ y=2(3x+2)=6x+4,
即变量y与x的关系为:y=6x+4。
例2、解答下列题目
(1)(甘肃省中考题)已知直线 与y轴交于点A,那么点A的坐标是( )。
(A)(0,–3) (B) (C) (D)(0,3)

(2)(杭州市中考题)已知正比例函数 ,当x=–3时,y=6.那么该正比例函数应为( )。
(A) (B) (C) (D)

(3)(福州市中考题)一次函数y=x+1的图象,不经过的象限是( )。
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
分析与答案:
(1) 直线与y轴交点坐标,特点是横坐标是0,纵坐标可代入函数关系求得。
或者直接利用直线和y轴交点为(0,b),得到交点(0,3),答案为D。
(2) 求解析式的关键是确定系数k,本题已知x=-3时,y=6,代入到y=kx中,解析式可确定。答案D: y=-2x。
(3) 由一次函数y=kx+b的图象性质,有以下结论:

题目中y=x+1,k=1>0,则函数图象必过一、三象限;b=1>0,则直线和y轴交于正半轴,可以判定直线位置,也可以画草图,或取两个点画草图判断,图像不过第四象限。

答案:D。

例3、(辽宁省中考题)某单位急需用车;但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家签订月租车合同。设汽车每月行驶x千米,应付给个体车主的月费用是y1元,应付给出租车公司的月费用是y2元,y1、y2分别与x之间的函数关系图象(两条射线)如图,观察图象回答下列问题:
(1)每月行驶的路程在什么范围内时,租国营公司的车合算?
(2)每月行驶的路程等于多少时,租两家车的费用相同?
(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪家的车合算?

分析:因给出了两个函数的图象可知一个是一次函数,一个是一次函数的特殊形式正比例函数,两条直线交点的横坐标为1500,表明当x=1500时,两条直线的函数值y相等,并且根据图像可以知道x>1500时,y2在y1上方;0<x<1500时,y2在y1下方。利用图象,三个问题很容易解答。
答:(1)每月行驶的路程小于1500千米时,租国营公司的车合算。
[或答:当0≤x<1500(千米)时,租国营公司的车合算]。
(2)每月行驶的路程等于1500千米时,租两家车的费用相同。
(3)如果每月行驶的路程为2300千米,那么这个单位租个体车主的车合算。
例4、(河北省中考题)某工厂有甲、乙两条生产线先后投产。在乙生产线投产以前,甲生产线已生产了200吨成品;从乙生产线投产开始,甲、乙两条生产线每天分别生产20吨和30吨成品。
(1)分别求出甲、乙两条生产线投产后,各自总产量y(吨)与从乙开始投产以来所用时间x(天)之间的函数关系式,并求出第几天结束时,甲、乙两条生产线的总产量相同;
(2)在如图所示的直角坐标系中,作出上述两个函数在第一象限内的图象;观察图象,分别指出第15天和第25天结束时,哪条生产线的总产量高?

分析:(1)根据给出的条件先列出y与x的函数式, =20x+200, =30x,当 = 时,求出x。
(2)在给出的直角坐标系中画出两个函数的图象,根据点的坐标可以看出第15天和25天结束时,甲、乙两条生产线的总产量的高低。

解:(1)由题意可得:
甲生产线生产时对应的函数关系式是:y=20x+200,
乙生产线生产时对应的函数关系式是:y=30x,
令20x+200=30x,解得x=20,即第20天结束时,两条生产线的产量相同。
(2)由(1)可知,甲生产线所对应的生产函数图象一定经过两点A(0,200)和
B(20,600);
乙生产线所对应的生产函数图象一定经过两点O(0,0)和B(20,600)。
因此图象如右图所示,由图象可知:第15天结束时,甲生产线的总产量高;第25天结束时,乙生产线的总产量高。
例5.直线y=kx+b与直线y=5-4x平行,且与直线y=-3(x-6)相交,交点在y轴上,求此直线解析式。
分析:直线y=kx+b的位置由系数k、b来决定:由k来定方向,由b来定与y轴的交点,若两直线平行,则解析式的一次项系数k相等。例如y=2x,y=2x+3的图象平行。
解:∵ y=kx+b与y=5-4x平行,
∴ k=-4,
∵ y=kx+b与y=-3(x-6)=-3x+18相交于y轴,
∴ b=18,
∴ y=-4x+18。
说明:一次函数y=kx+b图象的位置由系数k、b来决定:由k来定方向,由b来定点,即函数图象平行于直线y=kx,经过(0,b)点,反之亦成立,即由函数图象方向定k,由与y轴交点定b。
例6.直线与x轴交于点A(-4,0),与y轴交于点B,若点B到x轴的距离为2,求直线的解析式。
解:∵ 点B到x轴的距离为2,
∴ 点B的坐标为(0,±2),
设直线的解析式为y=kx±2,
∵ 直线过点A(-4,0),
∴ 0=-4k±2,
解得:k=± ,
∴直线AB的解析式为y= x+2或y=- x-2。

说明:此例看起来很简单,但实际上隐含了很多推理过程,而这些推理是求一次函数解析式必备的。
(1)图象是直线的函数是一次函数;
(2)直线与y轴交于B点,则点B(0,yB);
(3)点B到x轴距离为2,则|yB|=2;
(4)点B的纵坐标等于直线解析式的常数项,即b=yB;
(5)已知直线与y轴交点的纵坐标yB,可设y=kx+yB;
下面只需待定k即可。
三、提高与思考
例1.已知一次函数y1=(n-2)x+n的图象与y轴交点的纵坐标为-1,判断y2=(3- )xn+2是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。
解:依题意,得
解得n=-1,
∴ y1=-3x-1,
y2=(3- )x, y2是正比例函数;
y1=-3x-1的图象经过第二、三、四象限,y1随x的增大而减小;
y2=(3- )x的图象经过第一、三象限,y2随x的增大而增大。
说明:由于一次函数的解析式含有待定系数n,故求解析式的关键是构造关于n的方程,此题利用“一次函数解析式的常数项就是图象与y轴交点纵坐标”来构造方程。
例2.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,求正比例函数和一次函数的解析式。
分析:自画草图如下:
解:设正比例函数y=kx,
一次函数y=ax+b,
∵ 点B在第三象限,横坐标为-2,
设B(-2,yB),其中yB<0,
∵ =6,
∴ AO•|yB|=6,
∴ yB=-2,
把点B(-2,-2)代入正比例函数y=kx,得k=1,
把点A(-6,0)、B(-2,-2)代入y=ax+b,

解得:

∴ y=x, y=- x-3即所求。

说明:(1)此例需要利用正比例函数、一次函数定义写出含待定系数的结构式,注意两个函数中的系数要用不同字母表示;
(2)此例需要把条件(面积)转化为点B的坐标。这个转化实质含有两步:一是利用面积公式 AO•

BD=6(过点B作BD⊥AO于D)计算出线段长BD=2,再利用|yB|=BD及点B在第三象限计算出yB=-2。若去掉第三象限的条件,想一想点B的位置有几种可能,结果会有什么变化?(答:有两种可能,点B可能在第二象限(-2,2),结果增加一组y=-x, y= (x+3)。 (有答案,自己去看吧)

1 全等三角形的对应边、对应角相等 ­

2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 ­

3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 ­

4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 ­

5 边边边公理(SSS) 有三边对应相等的两个三角形全等 ­

6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 ­

7 定理1 在角的平分线上的点到这个角的两边的距离相等 ­

8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 ­

9 角的平分线是到角的两边距离相等的所有点的集合 ­

10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) ­

21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 ­

22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 ­

23 推论3 等边三角形的各角都相等,并且每一个角都等于60° ­

24 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) ­

25 推论1 三个角都相等的三角形是等边三角形 ­

26 推论 2 有一个角等于60°的等腰三角形是等边三角形 ­

27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 ­

28 直角三角形斜边上的中线等于斜边上的一半 ­

29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ­

30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 ­

31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 ­

32 定理1 关于某条直线对称的两个图形是全等形 ­

33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 ­

34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 ­

35逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 ­

36勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 ­

37勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 ­

38定理 四边形的内角和等于360° ­

39四边形的外角和等于360° ­

40多边形内角和定理 n边形的内角的和等于(n-2)×180° ­

41推论 任意多边的外角和等于360° ­

42平行四边形性质定理1 平行四边形的对角相等 ­

43平行四边形性质定理2 平行四边形的对边相等 ­

44推论 夹在两条平行线间的平行线段相等 ­

45平行四边形性质定理3 平行四边形的对角线互相平分 ­

46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 ­

47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 ­

48平行四边形判定定理3 对角线互相平分的四边形是平行四边形 ­

49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 ­

50矩形性质定理1 矩形的四个角都是直角 ­

51矩形性质定理2 矩形的对角线相等 ­

52矩形判定定理1 有三个角是直角的四边形是矩形 ­

53矩形判定定理2 对角线相等的平行四边形是矩形 ­

54菱形性质定理1 菱形的四条边都相等 ­

55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 ­

56菱形面积=对角线乘积的一半,即S=(a×b)÷2 ­

57菱形判定定理1 四边都相等的四边形是菱形 ­

58菱形判定定理2 对角线互相垂直的平行四边形是菱形 ­

59正方形性质定理1 正方形的四个角都是直角,四条边都相等 ­

60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 ­

61定理1 关于中心对称的两个图形是全等的 ­

62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 ­

63逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 ­

点平分,那么这两个图形关于这一点对称 ­

64等腰梯形性质定理 等腰梯形在同一底上的两个角相等 ­

65等腰梯形的两条对角线相等 ­

66等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 ­

67对角线相等的梯形是等腰梯形 ­

68平行线等分线段定理 如果一组平行线在一条直线上截得的线段 ­

相等,那么在其他直线上截得的线段也相等 ­

69 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 ­

70 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 ­

三边 ­

71 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 ­

的一半 ­

72 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 ­

一半 L=(a+b)÷2 S=L×h ­

2. 八年级上册数学函数知识

定义与定义式自变量x和因变量y有如下关系:

y=kx (k为任意不为零实数)

或y=kx+b (k为任意不为零实数,b为任意实数)

则此时称y是x的一次函数。

特别的,当b=0时,y是x的正比例函数。即:y=kx (k为任意不为零实数)

正比例函数图像经过原点

定义域:自变量的取值范围,自变量的取值应使函数有意义;要与实际相符合。
[编辑本段]一次函数的性质
1.y的变化值与对应的x的变化值成正比例,比值为k

即:y=kx+b(k≠0) (k不等于0,且k,b为常数)

2.当x=0时,b为函数在y轴上的,坐标为(0,b).

3.k为一次函数y=kx+b的斜率,k=tanΘ(角Θ为一次函数图象与x轴正方向夹角,Θ≠90°)

形。取。象。交。减

4.当b=0时,一次函数图像变为正比例函数,正比例函数是特殊的一次函数.

5.函数图像性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图像相交;当k,b都相同时,两条直线重合。
[编辑本段]一次函数的图像及性质
1.作法与图形:通过如下3个步骤

(1)列表[一般取两个点,根据两点确定一条直线];

(2)描点;

(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。

3.函数不是数,它是指某一变化过程中两个变量之间的关系。

4.k,b与函数图像所在象限:

y=kx时(即b等于0,y与x成正比)

当k>0时,直线必通过一、三象限,y随x的增大而增大;

当k<0时,直线必通过二、四象限,y随x的增大而减小。

y=kx+b时:

当 k>0,b>0, 这时此函数的图象经过一,二,三象限。

当 k>0,b<0, 这时此函数的图象经过一,三,四象限。

当 k<0,b>0, 这时此函数的图象经过一,二,四象限。

当 k<0,b<0, 这时此函数的图象经过二,三,四象限。

当b>0时,直线必通过一、二象限;

当b<0时,直线必通过三、四象限。

特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限,不会通过二、四象限。当k<0时,直线只通过二、四象限,不会通过一、三象限。

4、特殊位置关系

当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等

当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1)
[编辑本段]确定一次函数的表达式
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b …… ① 和 y2=kx2+b …… ②

(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。
[编辑本段]一次函数在生活中的应用
1.当时间t一定,距离s是速度v的一次函数。s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
[编辑本段]常用公式
1.求函数图像的k值:(y1-y2)/(x1-x2)

2.求与x轴平行线段的中点:|x1-x2|/2

3.求与y轴平行线段的中点:|y1-y2|/2

4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)

5.求两个一次函数式图像交点坐标:解两函数式

两个一次函数 y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标

6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]

7.求任意2点的连线的一次函数解析式:(X-x1)/(x1-x2)=(Y-y1)/(y1-y2) (其中分母为0,则分子为0)

k b

+ + 在一象限

+ - 在四象限

- + 在二象限

- - 在三象限

8.若两条直线y1=k1x+b1∥y2=k2x+b2,那么k1=k2,b1≠b2

9.如两条直线y1=k1x+b1⊥y2=k2x+b2,那么k1×k2=-1

10.左移X则B+X,右移X则B-X

11.上移Y则X项+Y,下移Y则X项-Y

(有个规律.b项的值等于k乘于上移的单位在减去原来的b项。)

(此处不全 愿有人补充)

上移:(a为移动的数量)Y=k(X+a)+b

Y=kX+ak+b

下移:(a为移动的数量)Y=k(X-a)+b

Y=kX-ak+xb
[编辑本段]应用
一次函数y=kx+b的性质是:(1)当k>0时,y随x的增大而增大;(2)当k<0时,y随x的增大而减小。利用一次函数的性质可解决下列问题。

一、确定字母系数的取值范围

例1. 已知正比例函数 ,则当k<0时,y随x的增大而减小。

解:根据正比例函数的定义和性质,得 且m<0,即 且 ,所以 。

二、比较x值或y值的大小

例2. 已知点P1(x1,y1)、P2(x2,y2)是一次函数y=3x+4的图象上的两个点,且y1>y2,则x1与x2的大小关系是( )

A. x1>x2 B. x1<x2 C. x1=x2 D.无法确定

解:根据题意,知k=3>0,且y1>y2。根据一次函数的性质“当k>0时,y随x的增大而增大”,得x1>x2。故选A。

三、判断函数图象的位置

例3. 一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( )

A. 第一象限 B. 第二象限

C. 第三象限 D. 第四象限

解:由kb>0,知k、b同号。因为y随x的增大而减小,所以k<0。所以b<0。故一次函数y=kx+b的图象经过第二、三、四象限,不经过第一象限。故选A . 典型例题:

例1. 一个弹簧,不挂物体时长12cm,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3kg物体后,弹簧总长是13.5cm,求弹簧总长是y(cm)与所挂物体质量x(kg)之间的函数关系式.如果弹簧最大总长为23cm,求自变量x的取值范围.

分析:此题由物理的定性问题转化为数学的定量问题,同时也是实际问题,其核心是弹簧的总长是空载长度与负载后伸长的长度之和,而自变量的取值范围则可由最大总长→最大伸长→最大质量及实际的思路来处理.

解:由题意设所求函数为y=kx+12

则13.5=3k+12,得k=0.5

∴所求函数解析式为y=0.5x+12

由23=0.5x+12得:x=22

∴自变量x的取值范围是0≤x≤22

例2

某学校需刻录一些电脑光盘,若到电脑公司刻录,每张需8元,若学校自刻,除租用刻录机120元外,每张还需成本4元,问这些光盘是到电脑公司刻录,还是学校自己刻费用较省?

此题要考虑X的范围

解:设总费用为Y元,刻录X张

电脑公司:Y1=8X

学校 :Y2=4X+120

当X=30时,Y1=Y2

当X>30时,Y1>Y2

当X<30时,Y1<Y2

【考点指要】

一次函数的定义、图象和性质在中考说明中是C级知识点,特别是根据问题中的条件求函数解析式和用待定系数法求函数解析式在中考说明中是D级知识点.它常与反比例函数、二次函数及方程、方程组、不等式综合在一起,以选择题、填空题、解答题等题型出现在中考题中,大约占有8分左右.解决这类问题常用到分类讨论、数形结合、方程和转化等数学思想方法.

例2.如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式。

解:(1)若k>0,则可以列方程组 -2k+b=-11

6k+b=9

解得k=2.5 b=-6 ,则此时的函数关系式为y=2.5x—6

(2)若k<0,则可以列方程组 -2k+b=9

6k+b=-11

解得k=-2.5 b=4,则此时的函数解析式为y=-2.5x+4

【考点指要】

此题主要考察了学生对函数性质的理解,若k>0,则y随x的增大而增大;若k<0,则y随x的增大而减小。

一次函数解析式的几种类型

①ax+by+c=0[一般式]

②y=kx+b[斜截式]

(k为直线斜率,b为直线纵截距,正比例函数b=0)

③y-y1=k(x-x1)[点斜式]

(k为直线斜率,(x1,y1)为该直线所过的一个点)

④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]

((x1,y1)与(x2,y2)为直线上的两点)

⑤x/a-y/b=0[截距式]

(a、b分别为直线在x、y轴上的截距)

解析式表达局限性:

①所需条件较多(3个);

②、③不能表达没有斜率的直线(平行于x轴的直线);

④参数较多,计算过于烦琐;

⑤不能表达平行于坐标轴的直线和过圆点的直线。

倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜 角。设一直线的倾斜角为a,则该直线的斜率k=tg(a)

3. 数学八年级上册知识点,要总结归纳

八年级上册数学复习提纲
1 全等三角形的对应边、对应角相等 ¬
2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 ¬
3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 ¬
4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 ¬
5 边边边公理(SSS) 有三边对应相等的两个三角形全等 ¬
6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 ¬
7 定理1 在角的平分线上的点到这个角的两边的距离相等 ¬
8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 ¬
9 角的平分线是到角的两边距离相等的所有点的集合 ¬
10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) ¬
21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 ¬
22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 ¬
23 推论3 等边三角形的各角都相等,并且每一个角都等于60° ¬
24 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) ¬
25 推论1 三个角都相等的三角形是等边三角形 ¬
26 推论 2 有一个角等于60°的等腰三角形是等边三角形 ¬
27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 ¬
28 直角三角形斜边上的中线等于斜边上的一半 ¬
29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ¬
30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 ¬
31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 ¬
32 定理1 关于某条直线对称的两个图形是全等形 ¬
33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 ¬
34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 ¬
35逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 ¬
36勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 ¬
37勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 ¬
38定理 四边形的内角和等于360° ¬
39四边形的外角和等于360° ¬
40多边形内角和定理 n边形的内角的和等于(n-2)×180° ¬
41推论 任意多边的外角和等于360° ¬
42平行四边形性质定理1 平行四边形的对角相等 ¬
43平行四边形性质定理2 平行四边形的对边相等 ¬
44推论 夹在两条平行线间的平行线段相等 ¬
45平行四边形性质定理3 平行四边形的对角线互相平分 ¬
46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 ¬
47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 ¬
48平行四边形判定定理3 对角线互相平分的四边形是平行四边形 ¬
49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 ¬
50矩形性质定理1 矩形的四个角都是直角 ¬
51矩形性质定理2 矩形的对角线相等 ¬
52矩形判定定理1 有三个角是直角的四边形是矩形 ¬
53矩形判定定理2 对角线相等的平行四边形是矩形 ¬
54菱形性质定理1 菱形的四条边都相等 ¬
55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 ¬
56菱形面积=对角线乘积的一半,即S=(a×b)÷2 ¬
57菱形判定定理1 四边都相等的四边形是菱形 ¬
58菱形判定定理2 对角线互相垂直的平行四边形是菱形 ¬
59正方形性质定理1 正方形的四个角都是直角,四条边都相等 ¬
60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 ¬
61定理1 关于中心对称的两个图形是全等的 ¬
62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 ¬
63逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 ¬
点平分,那么这两个图形关于这一点对称 ¬
64等腰梯形性质定理 等腰梯形在同一底上的两个角相等 ¬
65等腰梯形的两条对角线相等 ¬
66等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 ¬
67对角线相等的梯形是等腰梯形 ¬
68平行线等分线段定理 如果一组平行线在一条直线上截得的线段 ¬
相等,那么在其他直线上截得的线段也相等 ¬
69 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 ¬
70 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 ¬
三边 ¬
71 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 ¬
的一半 ¬
72 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 ¬
一半 L=(a+b)÷2 S=L×h ¬
73 (1)比例的基本性质 如果a:b=c:d,那么ad=bc ¬
如果ad=bc,那么a:b=c:d ¬
74 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d ¬
75 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 ¬
(a+c+…+m)/(b+d+…+n)=a/b ¬
76 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 ¬
线段成比例 ¬
77 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 ¬
78 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 ¬
79 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 ¬
80 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 ¬
81 相似三角形判定定理1 两角对应相等,两三角形相似(ASA) ¬
82 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 ¬
83 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) ¬
84 判定定理3 三边对应成比例,两三角形相似(SSS) ¬

4. 八年级上数学知识点

第十一章 全等三角形
11.1 全等三角形
11.2 三角形全等的判定
阅读与思考 全等与全等三角形
11.3 角的平分线的性质
教学活动
小结
复习题11
第十二章 轴对称
12.1 轴对称
12.2 作轴对称图形
12.3 等腰三角形
教学活动
小结
复习题12
第十三章 实数
13.1 平方根
13.2 立方根
13.3 实数
教学活动
小结
复习题13
第十四章 一次函数
14.1 变量与函数
14.2 一次函数
14.3 用函数观点看方程(组)与不等式
14.4 课题学习 选择方案
教学活动
小结
复习题14
第十五章 整式的乘除与因式分解
15.1 整式的乘法
15.2 乘法公式
15.3 整式的除法
教学活动
小结
例题:
1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y是x的函数。
注意:(1)k≠0,否则自变量x的最高次项的系数不为1;
(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:一次函数的图象是一条直线
(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(- ,0)。

(2)正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0)的图象是经过(- ,0)和(0,b)的一条直线。

(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。
3、一次函数图象的性质:
(1)图象在平面直角坐标系中的位置:

(2)增减性:

k>0时,y随x增大而增大;
k<0时,y随x增大而减小。
4、求一次函数解析式的方法
求函数解析式的方法主要有三种:
一是由已知函数推导,如例题1;
二是由实际问题列出两个未知数的方程,再转化为函数解析式,如例题4的第一问。
三是用待定系数法求函数解析式,如例2的第二小题、例7。
其步骤是:①根据题给条件写出含有待定系数的解析式;②将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程,得到待定系数的具体数值;④将求出的待定系数代入要求的函数解析式中。
二、例题举例:
例1、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。
分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x的关系。
解:∵ y=2y1
y1=3x+2,
∴ y=2(3x+2)=6x+4,
即变量y与x的关系为:y=6x+4。
例2、解答下列题目
(1)(甘肃省中考题)已知直线 与y轴交于点A,那么点A的坐标是( )。
(A)(0,–3) (B) (C) (D)(0,3)

(2)(杭州市中考题)已知正比例函数 ,当x=–3时,y=6.那么该正比例函数应为( )。
(A) (B) (C) (D)

(3)(福州市中考题)一次函数y=x+1的图象,不经过的象限是( )。
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
分析与答案:
(1) 直线与y轴交点坐标,特点是横坐标是0,纵坐标可代入函数关系求得。
或者直接利用直线和y轴交点为(0,b),得到交点(0,3),答案为D。
(2) 求解析式的关键是确定系数k,本题已知x=-3时,y=6,代入到y=kx中,解析式可确定。答案D: y=-2x。
(3) 由一次函数y=kx+b的图象性质,有以下结论:

题目中y=x+1,k=1>0,则函数图象必过一、三象限;b=1>0,则直线和y轴交于正半轴,可以判定直线位置,也可以画草图,或取两个点画草图判断,图像不过第四象限。

答案:D。

例3、(辽宁省中考题)某单位急需用车;但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家签订月租车合同。设汽车每月行驶x千米,应付给个体车主的月费用是y1元,应付给出租车公司的月费用是y2元,y1、y2分别与x之间的函数关系图象(两条射线)如图,观察图象回答下列问题:
(1)每月行驶的路程在什么范围内时,租国营公司的车合算?
(2)每月行驶的路程等于多少时,租两家车的费用相同?
(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪家的车合算?

分析:因给出了两个函数的图象可知一个是一次函数,一个是一次函数的特殊形式正比例函数,两条直线交点的横坐标为1500,表明当x=1500时,两条直线的函数值y相等,并且根据图像可以知道x>1500时,y2在y1上方;0<x<1500时,y2在y1下方。利用图象,三个问题很容易解答。
答:(1)每月行驶的路程小于1500千米时,租国营公司的车合算。
[或答:当0≤x<1500(千米)时,租国营公司的车合算]。
(2)每月行驶的路程等于1500千米时,租两家车的费用相同。
(3)如果每月行驶的路程为2300千米,那么这个单位租个体车主的车合算。
例4、(河北省中考题)某工厂有甲、乙两条生产线先后投产。在乙生产线投产以前,甲生产线已生产了200吨成品;从乙生产线投产开始,甲、乙两条生产线每天分别生产20吨和30吨成品。
(1)分别求出甲、乙两条生产线投产后,各自总产量y(吨)与从乙开始投产以来所用时间x(天)之间的函数关系式,并求出第几天结束时,甲、乙两条生产线的总产量相同;
(2)在如图所示的直角坐标系中,作出上述两个函数在第一象限内的图象;观察图象,分别指出第15天和第25天结束时,哪条生产线的总产量高?

分析:(1)根据给出的条件先列出y与x的函数式, =20x+200, =30x,当 = 时,求出x。
(2)在给出的直角坐标系中画出两个函数的图象,根据点的坐标可以看出第15天和25天结束时,甲、乙两条生产线的总产量的高低。

解:(1)由题意可得:
甲生产线生产时对应的函数关系式是:y=20x+200,
乙生产线生产时对应的函数关系式是:y=30x,
令20x+200=30x,解得x=20,即第20天结束时,两条生产线的产量相同。
(2)由(1)可知,甲生产线所对应的生产函数图象一定经过两点A(0,200)和
B(20,600);
乙生产线所对应的生产函数图象一定经过两点O(0,0)和B(20,600)。
因此图象如右图所示,由图象可知:第15天结束时,甲生产线的总产量高;第25天结束时,乙生产线的总产量高。
例5.直线y=kx+b与直线y=5-4x平行,且与直线y=-3(x-6)相交,交点在y轴上,求此直线解析式。
分析:直线y=kx+b的位置由系数k、b来决定:由k来定方向,由b来定与y轴的交点,若两直线平行,则解析式的一次项系数k相等。例如y=2x,y=2x+3的图象平行。
解:∵ y=kx+b与y=5-4x平行,
∴ k=-4,
∵ y=kx+b与y=-3(x-6)=-3x+18相交于y轴,
∴ b=18,
∴ y=-4x+18。
说明:一次函数y=kx+b图象的位置由系数k、b来决定:由k来定方向,由b来定点,即函数图象平行于直线y=kx,经过(0,b)点,反之亦成立,即由函数图象方向定k,由与y轴交点定b。
例6.直线与x轴交于点A(-4,0),与y轴交于点B,若点B到x轴的距离为2,求直线的解析式。
解:∵ 点B到x轴的距离为2,
∴ 点B的坐标为(0,±2),
设直线的解析式为y=kx±2,
∵ 直线过点A(-4,0),
∴ 0=-4k±2,
解得:k=± ,
∴直线AB的解析式为y= x+2或y=- x-2。

说明:此例看起来很简单,但实际上隐含了很多推理过程,而这些推理是求一次函数解析式必备的。
(1)图象是直线的函数是一次函数;
(2)直线与y轴交于B点,则点B(0,yB);
(3)点B到x轴距离为2,则|yB|=2;
(4)点B的纵坐标等于直线解析式的常数项,即b=yB;
(5)已知直线与y轴交点的纵坐标yB,可设y=kx+yB;
下面只需待定k即可。
三、提高与思考
例1.已知一次函数y1=(n-2)x+n的图象与y轴交点的纵坐标为-1,判断y2=(3- )xn+2是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。
解:依题意,得
解得n=-1,
∴ y1=-3x-1,
y2=(3- )x, y2是正比例函数;
y1=-3x-1的图象经过第二、三、四象限,y1随x的增大而减小;
y2=(3- )x的图象经过第一、三象限,y2随x的增大而增大。
说明:由于一次函数的解析式含有待定系数n,故求解析式的关键是构造关于n的方程,此题利用“一次函数解析式的常数项就是图象与y轴交点纵坐标”来构造方程。
例2.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,求正比例函数和一次函数的解析式。
分析:自画草图如下:
解:设正比例函数y=kx,
一次函数y=ax+b,
∵ 点B在第三象限,横坐标为-2,
设B(-2,yB),其中yB<0,
∵ =6,
∴ AO•|yB|=6,
∴ yB=-2,
把点B(-2,-2)代入正比例函数y=kx,得k=1,
把点A(-6,0)、B(-2,-2)代入y=ax+b,

解得:

∴ y=x, y=- x-3即所求。

说明:(1)此例需要利用正比例函数、一次函数定义写出含待定系数的结构式,注意两个函数中的系数要用不同字母表示;
(2)此例需要把条件(面积)转化为点B的坐标。这个转化实质含有两步:一是利用面积公式 AO•

BD=6(过点B作BD⊥AO于D)计算出线段长BD=2,再利用|yB|=BD及点B在第三象限计算出yB=-2。若去掉第三象限的条件,想一想点B的位置有几种可能,结果会有什么变化?(答:有两种可能,点B可能在第二象限(-2,2),结果增加一组y=-x, y= (x+3)。

5. 冀教版八年级上数学知识点总结

1 全等三角形的对应边、对应角相等 ­

2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 ­

3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 ­

4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 ­

5 边边边公理(SSS) 有三边对应相等的两个三角形全等 ­

6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 ­

7 定理1 在角的平分线上的点到这个角的两边的距离相等 ­

8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 ­

9 角的平分线是到角的两边距离相等的所有点的集合 ­

10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) ­

21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 ­

22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 ­

23 推论3 等边三角形的各角都相等,并且每一个角都等于60° ­

24 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) ­

25 推论1 三个角都相等的三角形是等边三角形 ­

26 推论 2 有一个角等于60°的等腰三角形是等边三角形 ­

27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 ­

28 直角三角形斜边上的中线等于斜边上的一半 ­

29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ­

30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 ­

31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 ­

32 定理1 关于某条直线对称的两个图形是全等形 ­

33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 ­

34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 ­

35逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 ­

36勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 ­

37勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 ­

38定理 四边形的内角和等于360° ­

39四边形的外角和等于360° ­

40多边形内角和定理 n边形的内角的和等于(n-2)×180° ­

41推论 任意多边的外角和等于360° ­

42平行四边形性质定理1 平行四边形的对角相等 ­

43平行四边形性质定理2 平行四边形的对边相等 ­

44推论 夹在两条平行线间的平行线段相等 ­

45平行四边形性质定理3 平行四边形的对角线互相平分 ­

46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 ­

47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 ­

48平行四边形判定定理3 对角线互相平分的四边形是平行四边形 ­

49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 ­

50矩形性质定理1 矩形的四个角都是直角 ­

51矩形性质定理2 矩形的对角线相等 ­

52矩形判定定理1 有三个角是直角的四边形是矩形 ­

53矩形判定定理2 对角线相等的平行四边形是矩形 ­

54菱形性质定理1 菱形的四条边都相等 ­

55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 ­

56菱形面积=对角线乘积的一半,即S=(a×b)÷2 ­

57菱形判定定理1 四边都相等的四边形是菱形 ­

58菱形判定定理2 对角线互相垂直的平行四边形是菱形 ­

59正方形性质定理1 正方形的四个角都是直角,四条边都相等 ­

60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 ­

61定理1 关于中心对称的两个图形是全等的 ­

62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 ­

63逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 ­

点平分,那么这两个图形关于这一点对称 ­

64等腰梯形性质定理 等腰梯形在同一底上的两个角相等 ­

65等腰梯形的两条对角线相等 ­

66等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 ­

67对角线相等的梯形是等腰梯形 ­

68平行线等分线段定理 如果一组平行线在一条直线上截得的线段 ­

相等,那么在其他直线上截得的线段也相等 ­

69 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 ­

70 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 ­

三边 ­

71 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 ­

的一半 ­

72 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 ­

一半 L=(a+b)÷2 S=L×h ­

73 (1)比例的基本性质 如果a:b=c:d,那么ad=bc ­

如果ad=bc,那么a:b=c:d ­

74 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d ­

75 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 ­

(a+c+…+m)/(b+d+…+n)=a/b ­

76 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 ­

线段成比例 ­

77 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 ­

78 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 ­

79 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 ­

80 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 ­

81 相似三角形判定定理1 两角对应相等,两三角形相似(ASA) ­

82 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 ­

83 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) ­

84 判定定理3 三边对应成比例,两三角形相似(SSS) ­

85 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 ­

角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 ­

86 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 ­

分线的比都等于相似比 ­

87 性质定理2 相似三角形周长的比等于相似比 ­

88 性质定理3 相似三角形面积的比等于相似比的平方 ­

89 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 ­

于它的余角的正弦值 ­

90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 ­

于它的余角的正切值 ­

91圆是定点的距离等于定长的点的集合 ­

92圆的内部可以看作是圆心的距离小于半径的点的集合 ­

93圆的外部可以看作是圆心的距离大于半径的点的集合 ­

94同圆或等圆的半径相等 ­

95到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 ­

径的圆 ­

96和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 ­

平分线 ­

97到已知角的两边距离相等的点的轨迹,是这个角的平分线 ­

98到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 ­

离相等的一条直线 ­

99定理 不在同一直线上的三点确定一个圆。 ­

100垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 ­

101推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ­

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ­

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 ­

102推论2 圆的两条平行弦所夹的弧相等 ­

103圆是以圆心为对称中心的中心对称图形 ­

104定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 ­

相等,所对的弦的弦心距相等 ­

105推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 ­

弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 ­

106定理 一条弧所对的圆周角等于它所对的圆心角的一半 ­

107推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 ­

108推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 ­

对的弦是直径 ­

109推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 ­

110定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 ­

的内对角 ­

111①直线L和⊙O相交 d<r ­

②直线L和⊙O相切 d=r ­

③直线L和⊙O相离 d>r ­

112切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 ­

113切线的性质定理 圆的切线垂直于经过切点的半径 ­

114推论1 经过圆心且垂直于切线的直线必经过切点 ­

115推论2 经过切点且垂直于切线的直线必经过圆心 ­

116切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, ­

圆心和这一点的连线平分两条切线的夹角 ­

117圆的外切四边形的两组对边的和相等 ­

118弦切角定理 弦切角等于它所夹的弧对的圆周角 ­

119推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 ­

120相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 ­

相等 ­

121推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 ­

两条线段的比例中项 ­

122切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 ­

线与圆交点的两条线段长的比例中项 ­

123推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 ­

124如果两个圆相切,那么切点一定在连心线上 ­

125①两圆外离 d>R+r ②两圆外切 d=R+r ­

③两圆相交 R-r<d<R+r(R>r) ­

④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r) ­

126定理 相交两圆的连心线垂直平分两圆的公共弦 ­

127定理 把圆分成n(n≥3): ­

⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ­

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 ­

128定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 ­

129正n边形的每个内角都等于(n-2)×180°/n ­

130定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 ­

131正n边形的面积Sn=pnrn/2 p表示正n边形的周长 ­

132正三角形面积√3a/4 a表示边长 ­

133如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 ­

360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 ­

134弧长计算公式:L=n兀R/180 ­

135扇形面积公式:S扇形=n兀R^2/360=LR/2 ­

136内公切线长= d-(R-r) 外公切线长= d-(R+r)­

6. 八年级上册数学书蓝字知识点

第一章 一元一次不等式和一元一次不等式组一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。能使不等式成立的未知数的值,叫做不等式的解. 不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集. 求不等式解集的过程叫解不等式.由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组不等式组的解集 :一元一次不等式组各个不等式的解集的公共部分。等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式. 基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变. (注:移项要变号,但不等号不变。)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质<1>、 若a>b, 则a+c>b+c;<2>、若a>b, c>0 则ac>bc若c<0, 则ac<bc 不等式的其他性质:反射性:若a>b,则b<a;传递性:若a>b,且b>c,则a>c三、解不等式的步骤:1、去分母; 2、去括号; 3、移项合并同类项; 4、系数化为1。 四、解不等式组的步骤:1、解出不等式的解集2、在同一数轴表示不等式的解集。 五、列一元一次不等式组解实际问题的一般步骤:(1) 审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。六、常考题型: 1、 求4x-6 7x-12的非负数解. 2、已知3(x-a)=x-a+1r的解适合2(x-5) 8a,求a 的范围.3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间。 第二章 分解因式一、公式:1、 ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a2±2ab+b2=(a±b)2 二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。 1、把几个整式的积化成一个多项式的形式,是乘法运算.2、把一个多项式化成几个整式的积的形式,是因式分解.3、ma+mb+mc m(a+b+c)4、因式分解与整式乘法是相反方向的变形。三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式. 找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)若有“-”先提取“-”,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式. 分解因式的方法:1、提公因式法。2、运用公式法。 第三章 分式注:1°对于任意一个分式,分母都不能为零. 2°分式与整式不同的是:分式的分母中含有字母,整式的分母中不含字母. 3°分式的值为零含两层意思:分母不等于零;分子等于零。( 中B≠0时,分式有意义;分式 中,当B=0分式无意义;当A=0且B≠0时,分式的值为零。)常考知识点:1、分式的意义,分式的化简。2、分式的加减乘除运算。3、分式方程的解法及其利用分式方程解应用题。第四章 相似图形一、 定义 表示两个比相等的式子叫比例.如果a与b的比值和c与d的比值相等,那么 或a∶b=c∶d,这时组成比例的四个数a,b,c,d叫做比例的项,两端的两项叫做外项,中间的两项叫做内项.即a、d为外项,c、b为内项. 如果选用同一个长度单位量得两条线段AB、CD的长度分别是m、n,那么就说这两条线段的比(ratio)AB∶CD=m∶n,或写成 = ,其中,线段AB、CD分别叫做这两个线段比的前项和后项.如果把 表示成比值k,则 =k或AB=k??CD. 四条线段a,b,c,d中,如果a与b的比等于c与d的比,即 ,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段. 黄金分割的定义:在线段AB上,点C把线段AB分成两条线段AC和BC,如果 ,那么称线段AB被点C黄金分割(golden section),点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.其中 ≈0.618. 引理:平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 相似多边形: 对应角相等,对应边成比例的两个多边形叫做相似多边形. 相似多边形:各角对应相等、各边对应成比例的两个多边形叫做相似多边形。 相似比:相似多边形对应边的比叫做相似比.二、比例的基本性质:1、若ad=bc(a,b,c,d都不等于0),那么 .如果(b,d都不为0),那么ad=bc.2、合比性质:如果 ,那么 。3、等比性质:如果 =…= (b+d+…+n≠0),那么 。4、更比性质:若 那么 。5、反比性质:若 那么 三、求两条线段的比时要注意的问题:(1)两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;(2)两条线段的比,没有长度单位,它与所采用的长度单位无关;(3)两条线段的长度都是正数,所以两条线段的比值总是正数.四、相似三角形(多边形)的性质:相似三角形对应角相等,对应边成比例,相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比。相似多边形的周长比等于相似比,面积比等于相似比的平方.五、全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL六、相似三角形的判定方法,判断方法有:1.三边对应成比例的两个三角形相似;2.两角对应相等的两个三角形相似;3.两边对应成比例且夹角相等;4.定义法: 对应角相等,对应边成比例的两个三角形相似。5、定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。 在特殊的三角形中,有的相似,有的不相似.1、两个全等三角形一定相似.2、两个等腰直角三角形一定相似.3、两个等边三角形一定相似.4、两个直角三角形和两个等腰三角形不一定相似.七、位似图形上任意一对对应点到位似中心的距离之比等于位似比。 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫位似中心,这时的相似比又称为位似比。八、常考知识点:1、比例的基本性质,黄金分割比,位似图形的性质。2、相似三角形的性质及判定。相似多边形的性质。第五章 数据的收集与处理(1)普查的定义:这种为了一定目的而对考察对象进行的全面调查,称为普查.(2)总体:其中所要考察对象的全体称为总体。(3)个体:组成总体的每个考察对象称为个体(4)抽样调查:(sampling investigation):从总体中抽取部分个体进行调查,这种调查称为抽样调查.(5)样本(sample):其中从总体中抽取的一部分个体叫做总体的一个样本。(6) 当总体中的个体数目较多时,为了节省时间、人力、物力,可采用抽样调查.为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.还要注意关注样本的大小. (7)我们称每个对象出现的次数为频数。而每个对象出现的次数与总次数的比值为频率。数据波动的统计量:极差:指一组数据中最大数据与最小数据的差。方差:是各个数据与平均数之差的平方的平均数。标准差:方差的算术平方根。识记其计算公式。一组数据的极差,方差或标准差越小,这组数据就越稳定。还要知平均数,众数,中位数的定义。刻画平均水平用:平均数,众数,中位数。 刻画离散程度用:极差,方差,标准差。常考知识点:1、作频数分布表,作频数分布直方图。2、利用方差比较数据的稳定性。3、平均数,中位数,众数,极差,方差,标准差的求法。3、频率,样本的定义 第六章 证明一、对事情作出判断的句子,就叫做命题. 即:命题是判断一件事情的句子。一般情况下:疑问句不是命题.图形的作法不是命题. 每个命题都有条件(condition)和结论(conclusion)两部分组成. 条件是已知的事项,结论是由已知事项推断出的事项. 一般地,命题都可以写成“如果……,那么……”的形式.其中“如果”引出的部分是条件,“那么”引出的部分是结论. 要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例。二、三角形内角和定理:三角形三个内角的和等于180度。1、证明三角形内角和定理的思路是将原三角形中的三个角“凑”到一起组成一个平角.一般需要作辅助线.既可以作平行线,也可以作一个角等于三角形中的一个角.2、三角形的外角与它相邻的内角是互为补角.三、三角形的外角与它不相邻的内角关系是:(1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.四、证明一个命题是真命题的基本步骤是:(1)根据题意,画出图形.(2)根据条件、结论,结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程. 在证明时需注意:(1)在一般情况下,分析的过程不要求写出来.(2)证明中的每一步推理都要有根据. 如果两条直线都和第三条直线平行,那么这两条直线也相互平行。30。所对的直角边是斜边的一半。斜边上的高是斜边的一半。常考知识点:1、三角形的内角和定理,及三角形外角定理。2两直线平行的性质及判定。命题及其条件和结论,真假命题的定义。(从网上经过反复比较后给你找的,采纳哦!)%D%A

7. 新人教版八年级数学上知识点总结详细讲解