1. 高中数学选修1-1和1-2的重点知识有哪些
选修1-1有:第一章常用逻辑用语
1.1命题及其关系
1.2充分条件与必要条件
1.3简单的逻辑联结词
阅读与思考“且”“或”“非”与“交”“并”“补”
1.4全称量词与存在量词
小结
复习参考题
第二章圆锥曲线与方程
2.1椭圆
探究与发现为什么截口曲线是椭圆
信息技术应用用《几何画板》探究点的轨迹:椭圆
2.2双曲线
探究与发现
2.3抛物线
阅读与思考圆锥曲线的光学性质及其应用
小结
复习参考题
第三章导数及其应用
3.1变化率与导数
3.2导数的计算
探究与发现牛顿法──用导数方法求方程的近似解
3.3导数在研究函数中的应用
信息技术应用图形技术与函数性质
3.4生活中的优化问题举例
实习作业走进微积分
小结
复习参考题
选修1-2有:第一章统计案例
1.1回归分析的基本思想及其初步应用
1.2独立性检验的基本思想及其初步应用
实习作业
小结
复习参考题
第二章推理与证明
2.1合情推理与演绎推理
阅读与思考科学发现中的推理
2.2直接证明与间接证明
小结
复习参考题
第三章数系的扩充与复数的引入
3.1数系的扩充和复数的概念
3.2复数代数形式的四则运算
小结
复习参考题
第四章框图
4.1流程图
4.2结构图
信息技术应用用word2002绘制流程图
小结
复习参考题
2. 高中数学选修1-1知识点多少个
设A坐标是(x1,y1),B(x2,y2) x1^2-y1^2/2=1 x2^2-y2^2/2=1 二式相减得到(x1+x2)(x1-x2)-(y1+y2)(y1-y2)/2=0 又有P(1,2)是AB的中点,则有x1+x2=2,y1+y2=4 故有K(AB)=(y1-y2)/(x1-x2)=2(x1+x2)/(y1+y2)=1 故AB的方程是y-2=1*(x-1),即有y=x+1 (2)假设。
3. 数学选修1-1的知识点总结
多做题少偷懒。看会书本再做题。数学无非是用点心花点时间都能掌握的东西。再难的题目也是几个简单的题目组合而成的,就看你想不想的到了
4. 高二数学选修1-1与选修2-1分别讲些什么内容包含哪几大块
5. 数学选修1-1知识点
高二数学选修1-1知识点
1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.
真命题:判断为真的语句.
假命题:判断为假的语句.
2、“若 ,则 ”形式的命题中的 称为命题的条件, 称为命题的结论.
3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.
若原命题为“若 ,则 ”,它的逆命题为“若 ,则 ”.
4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.
若原命题为“若 ,则 ”,则它的否命题为“若 ,则 ”.
5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题.
若原命题为“若 ,则 ”,则它的否命题为“若 ,则 ”.
6、四种命题的真假性:
原命题 逆命题 否命题 逆否命题
真 真 真 真
真 假 假 真
假 真 真 真
假 假 假 假
四种命题的真假性之间的关系:
两个命题互为逆否命题,它们有相同的真假性;
两个命题为互逆命题或互否命题,它们的真假性没有关系.
7、若 ,则 是 的充分条件, 是 的必要条件.
若 ,则 是 的充要条件(充分必要条件).
8、用联结词“且”把命题 和命题 联结起来,得到一个新命题,记作 .
当 、 都是真命题时, 是真命题;当 、 两个命题中有一个命题是假命题时, 是假命题.
用联结词“或”把命题 和命题 联结起来,得到一个新命题,记作 .
当 、 两个命题中有一个命题是真命题时, 是真命题;当 、 两个命题都是假命题时, 是假命题.
对一个命题 全盘否定,得到一个新命题,记作 .
若 是真命题,则 必是假命题;若 是假命题,则 必是真命题.
9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“ ”表示.
含有全称量词的命题称为全称命题.
全称命题“对 中任意一个 ,有 成立”,记作“ , ”.
短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“ ”表示.
含有存在量词的命题称为特称命题.
特称命题“存在 中的一个 ,使 成立”,记作“ , ”.
10、全称命题 : , ,它的否定 : , .全称命题的否定是特称命题.
11、平面内与两个定点 , 的距离之和等于常数(大于 )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.
12、椭圆的几何性质:
焦点的位置 焦点在 轴上
焦点在 轴上
图形
标准方程
范围 且
且
顶点 、
、
、
、
轴长 短轴的长 长轴的长
焦点 、
、
焦距
对称性 关于 轴、 轴、原点对称
离心率
准线方程
13、设 是椭圆上任一点,点 到 对应准线的距离为 ,点 到 对应准线的距离为 ,则 .
14、平面内与两个定点 , 的距离之差的绝对值等于常数(小于 )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.
15、双曲线的几何性质:
焦点的位置 焦点在 轴上
焦点在 轴上
图形
标准方程
范围 或 ,
或 ,
顶点 、
、
轴长 虚轴的长 实轴的长
焦点 、
、
焦距
对称性 关于 轴、 轴对称,关于原点中心对称
离心率
准线方程
渐近线方程
16、实轴和虚轴等长的双曲线称为等轴双曲线.
17、设 是双曲线上任一点,点 到 对应准线的距离为 ,点 到 对应准线的距离为 ,则 .
18、平面内与一个定点 和一条定直线 的距离相等的点的轨迹称为抛物线.定点 称为抛物线的焦点,定直线 称为抛物线的准线.
19、抛物线的几何性质:
标准方程
图形
顶点
对称轴 轴
轴
焦点
准线方程
离心率
范围
20、过抛物线的焦点作垂直于对称轴且交抛物线于 、 两点的线段 ,称为抛物线的“通径”,即 .
21、焦半径公式:
若点 在抛物线 上,焦点为 ,则 ;
若点 在抛物线 上,焦点为 ,则 ;
若点 在抛物线 上,焦点为 ,则 ;
若点 在抛物线 上,焦点为 ,则 .
22、若某个问题中的函数关系用 表示,问题中的变化率用式子
表示,则式子 称为函数 从 到 的平均变化率.
23、函数 在 处的瞬时变化率是 ,则称它为函数 在 处的导数,记作 或 ,即
.
24、函数 在点 处的导数的几何意义是曲线 在点 处的切线的斜率.曲线 在点 处的切线的斜率是 ,切线的方程为 .若函数在 处的导数不存在,则说明斜率不存在,切线的方程为 .
25、若当 变化时, 是 的函数,则称它为 的导函数(导数),记作 或 ,即 .
26、基本初等函数的导数公式:
若 ,则 ; 若 ,则 ;
若 ,则 ; 若 ,则 ;
若 ,则 ; 若 ,则 ;
若 ,则 ; 若 ,则 .
27、导数运算法则:
;
;
.
28、对于两个函数 和 ,若通过变量 , 可以表示成 的函数,则称这个函数为函数 和 的复合函数,记作 .
复合函数 的导数与函数 , 的导数间的关系是
.
29、在某个区间 内,若 ,则函数 在这个区间内单调递增;若 ,则函数 在这个区间内单调递减.
30、点 称为函数 的极小值点, 称为函数 的极小值;点 称为函数 的极大值点, 称为函数 的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.
31、求函数 的极值的方法是:解方程 .当 时:
如果在 附近的左侧 ,右侧 ,那么 是极大值;
如果在 附近的左侧 ,右侧 ,那么 是极小值.
32、求函数 在 上的最大值与最小值的步骤是:
求函数 在 内的极值;
将函数 的各极值与端点处的函数值 , 比较,其中最大的一个是最大值,最小的一个是最小值.
6. 人教版高中数学选修1-1总结
第一章 重点掌握一个命题的或、且、非的真假判断,另外会把一个全称命题和存在性命题进行否定,能判断充分条件、必要条件和充要条件。
第二章 重点掌握椭圆、双曲线、抛物线的标准方程和几何性质。
7. 关于数学选修1-1
文科生吧...我觉得有点危险...必修二你就不必担心了...空间向量应该不学...
第一章逻辑用语,考查内容可以涉及高中数学的绝大部分内容...特别是充要条件的探究题,数列、圆锥曲线、函数尤其突出,但平时练题的时候可能不会这样出题了...一般很简单...主要是对概念的判断....开始学比较简单...
第二章圆锥曲线...一定要好好学...高考压轴题内容...对必修一、必修二要求不高,属于一块新内容....当然,高中数学没有什么是绝对孤立的...比如圆锥曲线里面就有时要应用到函数思想与不等式的一些内容....
第三章导数...也是巨重要的...高考压轴题倒不一定,不过难度不小就是了...由于导数本身是一种函数,你说你必修一啥都不懂就有点危险了...函数的基本性质你需要复习一下,尤其是单调性.....
建议你还是提前预习一下...
8. 湖南数学选修1-1对于文科生重要吗
人民教育出版社的会考,但是考的内容不多。1-1里面的知识很简单,可以自学。
9. 文科数学选修1-1 什么时候学
看学校的安排,正常都是文理分班也就是高二初就开始学习
请采纳
10. 高二数学选修1-1与选修2-1分别讲些什么内容 包含哪几大块
圆锥曲线。!~~命题那些 !~~~~1-1文科的 2-1理科的 还有立体几何 2-1