当前位置:首页 » 基础知识 » 高一数学必修3知识点
扩展阅读
常考文化知识大全 2025-01-08 01:17:04
庆云渤海教育集团怎么样 2025-01-08 01:14:48

高一数学必修3知识点

发布时间: 2022-03-03 11:36:19

⑴ 高中数学必修三知识点归纳

太多了.不过我知道有一本书很好.你用应该不错.知识点比较全.是广西出版社的必修数学.各个必修都有.应该回帮道到你…

⑵ 高中数学知识点总结

《高中数学基础知识梳理(数学小飞侠)》网络网盘免费下载

链接:

提取码: i8i2

资源目录

01.集合例题讲解.mp4

01.集合进阶.mp4

02函数的值域.mp4

03函数的定义域与解析式.mp4

04函数的单调性.mp4

04函数的奇偶性.mp4

05指数运算与指数函数.mp4

07对数运算与对数函数.mp4

08幂函数突破.mp4

09函数零点专题.mp4

10含参二次函数与不等式专题.mp4

11二次函数根的分布专题.mp4

12空间几何体.mp4

13点线面位置关系进阶.mp4

14平行关系突破.mp4

15垂直关系突破.mp4

16空间几何关系综合.mp4

17直线方程突破.mp4

18圆的方程突破.mp4

19算法初步.mp4

20算法语句与算法案例.mp4

21数据的收集与频率分布.mp4

22常用统计量与相关关系.mp4

23古典概型概率.mp4

24几何概型概率.mp4

25任意角重难点.mp4

26三角函数定义与诱导公式.mp4

27三角函数图像及性质.mp4

28平面向量几何运算.mp4

29平面向量代数运算.mp4

30.三角恒等变换.mp4

31.三角函数计算专题.mp4

32.正弦定理与余弦定理.mp4

33.等差数列突破.mp4

34.等比数列突破.mp4

35.数列通项公式专题 .mp4

36.数列求和公式专题 .mp4

37.二次不等式与分式不等式.mp4

38.线性规划问题.mp4

39.基本不等式突破.mp4

40.逻辑用语专题.mp4

41.椭圆方程及其几何性质.mp4

42.双曲线方程及其性质.mp4

43.抛物线方程及其性质.mp4

44.直线与圆锥曲线综合.mp4

45.空间向量突破.mp4

46.导数的计算专题.mp4

47.导数的应用.mp4

48.导数的应用(二).mp4

49.定积分与微积分.mp4

50.复数专题.mp4

51.排列组合.mp4

52.二项式定理.mp4

53.随机变量及其变量.mp4

54回归分析与独立性检验.mp4

资源目录

01.集合例题讲解.mp4

01.集合进阶.mp4

02函数的值域.mp4

03函数的定义域与解析式.mp4

04函数的单调性.mp4

04函数的奇偶性.mp4

05指数运算与指数函数.mp4

07对数运算与对数函数.mp4

08幂函数突破.mp4

09函数零点专题.mp4

10含参二次函数与不等式专题.mp4

11二次函数根的分布专题.mp4

12空间几何体.mp4

13点线面位置关系进阶.mp4

14平行关系突破.mp4

15垂直关系突破.mp4

16空间几何关系综合.mp4

17直线方程突破.mp4

18圆的方程突破.mp4

19算法初步.mp4

20算法语句与算法案例.mp4

21数据的收集与频率分布.mp4

22常用统计量与相关关系.mp4

23古典概型概率.mp4

24几何概型概率.mp4

25任意角重难点.mp4

26三角函数定义与诱导公式.mp4

27三角函数图像及性质.mp4

28平面向量几何运算.mp4

29平面向量代数运算.mp4

30.三角恒等变换.mp4

31.三角函数计算专题.mp4

32.正弦定理与余弦定理.mp4

33.等差数列突破.mp4

34.等比数列突破.mp4

35.数列通项公式专题 .mp4

36.数列求和公式专题 .mp4

37.二次不等式与分式不等式.mp4

38.线性规划问题.mp4

39.基本不等式突破.mp4

40.逻辑用语专题.mp4

41.椭圆方程及其几何性质.mp4

42.双曲线方程及其性质.mp4

43.抛物线方程及其性质.mp4

44.直线与圆锥曲线综合.mp4

45.空间向量突破.mp4

46.导数的计算专题.mp4

47.导数的应用.mp4

48.导数的应用(二).mp4

49.定积分与微积分.mp4

50.复数专题.mp4

51.排列组合.mp4

52.二项式定理.mp4

53.随机变量及其变量.mp4

54回归分析与独立性检验.mp4

⑶ 高一必修数学知识点

一、集合:集合关系与充分、必要条件;含参、含绝对值即高次不等式解法(穿根);四种命题与充要条件。
二、函数:所有知识点。
三、数列:特殊数列的特殊方法,掌握累加,累乘,错位相减,列项相消等方法,熟记基本公式。
四、三角函数:公式;图像与性质;运用正、余弦定理解三角形角与边;
五、平面向量:向量与向量的运算;平面向量的坐标运算;平面向量的数量积及运算;线段的定比分点与平移;解斜三角形。
六、不等式(不知道这个是不是你说的方程式,就先写上了):主要是一些证法和定论。

我是今年刚毕业的高三学生,这些都是我的笔记,希望对你有所帮助,好好学哦,加油!!!

⑷ 高中数学必修3的知识点总结

第十二部分 统计与统计案例
1.抽样方法
⑴简单随机抽样:一般地,设一个总体的个数为N,通过逐个不放回的方法从中抽取一个容量为n的样本,且每个个体被抽到的机会相等,就称这种抽样为简单随机抽样。
注:①每个个体被抽到的概率为 ;
②常用的简单随机抽样方法有:抽签法;随机数法。
⑵系统抽样:当总体个数较多时,可将总体均衡的分成几个部分,然后按照预先制定的
规则,从每一个部分抽取一个个体,得到所需样本,这种抽样方法叫系统抽样。
注:步骤:①编号;②分段;③在第一段采用简单随机抽样方法确定其时个体编号 ;
④按预先制定的规则抽取样本。
⑶分层抽样:当已知总体有差异比较明显的几部分组成时,为使样本更充分的反映总体的情况,将总体分成几部分,然后按照各部分占总体的比例进行抽样,这种抽样叫分层抽样。
注:每个部分所抽取的样本个体数=该部分个体数
2.总体特征数的估计:
⑴样本平均数 ;
⑵样本方差 ;
⑶样本标准差 = ;
3.相关系数(判定两个变量线性相关性):
注:⑴ >0时,变量 正相关; <0时,变量 负相关;
⑵① 越接近于1,两个变量的线性相关性越强;② 接近于0时,两个变量之间几乎不存在线性相关关系。
4.回归分析中回归效果的判定:
⑴总偏差平方和: ⑵残差: ;⑶残差平方和: ;⑷回归平方和: - ;⑸相关指数 。
注:① 得知越大,说明残差平方和越小,则模型拟合效果越好;
② 越接近于1,,则回归效果越好。
5.独立性检验(分类变量关系):
随机变量 越大,说明两个分类变量,关系越强,反之,越弱。
十、导 数1.导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数). , (C为常数), , .2.多项式函数的导数与函数的单调性:在一个区间上 (个别点取等号) 在此区间上为增函数.在一个区间上 (个别点取等号) 在此区间上为减函数.3.导数与极值、导数与最值:(1)函数 在 处有 且“左正右负” 在 处取极大值;函数 在 处有 且“左负右正” 在 处取极小值.注意:①在 处有 是函数 在 处取极值的必要非充分条件.②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值.特别是给出函数极大(小)值的条件,一定要既考虑 ,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记.③单调性与最值(极值)的研究要注意列表!(2)函数 在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”;函数 在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”;注意:利用导数求最值的步骤:先找定义域 再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小值.4.应用导数求曲线的切线方程,要以“切点坐标”为桥梁,注意题目中是“处L”还是“过L”,对“二次抛物线”过抛物线上一点的切线 抛物线上该点处的切线,但对“三次曲线”过其上一点的切线包含两条,其中一条是该点处的切线,另一条是与曲线相交于该点.5.注意应用函数的导数,考察函数单调性、最值(极值),研究函数的性态,数形结合解决方程不等式等相关问题.十一、概率、统计、算法第十六部分 理科选修部分
1. 排列、组合和二项式定理
⑴排列数公式: =n(n-1)(n-2)…(n-m+1)= (m≤n,m、n∈N*),当m=n时为全排列 =n(n-1)(n-2)…3.2.1=n!;
⑵组合数公式: (m≤n), ;
⑶组合数性质: ;
⑷二项式定理:
①通项: ②注意二项式系数与系数的区别;
⑸二项式系数的性质:
①与首末两端等距离的二项式系数相等;②若n为偶数,中间一项(第 +1项)二项式系数最大;若n为奇数,中间两项(第 和 +1项)二项式系数最大;

(6)求二项展开式各项系数和或奇(偶)数项系数和时,注意运用赋值法。
2. 概率与统计
⑴随机变量的分布列:
①随机变量分布列的性质:pi≥0,i=1,2,…; p1+p2+…=1;
②离散型随机变量:
X x1 X2 … xn …
P P1 P2 … Pn …
期望:EX= x1p1 + x2p2 + … + xnpn + … ;
方差:DX= ;
注: ;
③两点分布:
X 0 1 期望:EX=p;方差:DX=p(1-p).
P 1-p p

4 超几何分布:
一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则 其中, 。
称分布列

X 0 1 … m
P …
为超几何分布列, 称X服从超几何分布。
⑤二项分布(独立重复试验):
若X~B(n,p),则EX=np, DX=np(1- p);注: 。
⑵条件概率:称 为在事件A发生的条件下,事件B发生的概率。
注:①0 P(B|A) 1;②P(B∪C|A)=P(B|A)+P(C|A)。
⑶独立事件同时发生的概率:P(AB)=P(A)P(B)。
⑷正态总体的概率密度函数: 式中 是参数,分别表示总体的平均数(期望值)与标准差;
(6)正态曲线的性质:
①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,关于直线x= 对称;
③曲线在x= 处达到峰值 ;④曲线与x轴之间的面积为1;
5 当 一定时,6 曲线随 质的变化沿x轴平移;
7 当 一定时,8 曲线形状由 确定: 越大,9 曲线越“矮胖”,10 表示总体分布越集中;
越小,曲线越“高瘦”,表示总体分布越分散。
注:P =0.6826;P =0.9544
P =0.9974第十部分 复数
1.概念:
⑴z=a+bi∈R b=0 (a,b∈R) z= z2≥0;
⑵z=a+bi是虚数 b≠0(a,b∈R);
⑶z=a+bi是纯虚数 a=0且b≠0(a,b∈R) z+ =0(z≠0) z2<0;
⑷a+bi=c+di a=c且c=d(a,b,c,d∈R);
2.复数的代数形式及其运算:设z1= a + bi , z2 = c + di (a,b,c,d∈R),则:
(1) z 1± z2 = (a + b) ± (c + d)i;⑵ z1.z2 = (a+bi)�6�1(c+di)=(ac-bd)+ (ad+bc)i;⑶z1÷z2 = (z2≠0) ;
3.几个重要的结论:
;⑶ ;⑷
⑸ 性质:T=4; ;
(6) 以3为周期,且 ; =0;
(7) 。
4.运算律:(1)
5.共轭的性质:⑴ ;⑵ ;⑶ ;⑷ 。
6.模的性质:⑴ ;⑵ ;⑶ ;⑷ ;

⑸ 高中数学必修三要重点学些什么呢

算法初步,统计,概率,
重点是概率与统计高考必有一个大题,算法初步只有一个小题

⑹ 高中数学必修三人教B版知识点总结

http://www.pep.com.cn/gzsx/ 希望有你想要的。。。

⑺ 高一数学必修三的主要内容

数学必修一主要内容有两个:集合、函数。
详细内容见网络:
“https://wapke..com/item/高中数学必修1/8030807?adapt=1&fr=aladdin”

⑻ 总结高中数学必修三、四知识点

必修3:http://wenku..com/view/a5c51e11f18583d0496459f6.html
必修4:http://wenku..com/view/f0c3a56ba45177232f60a2ee.html

⑼ 高一数学必修三 第一章统计 (最小二乘估计)的知识点

2.1.1简单随机抽样
1.总体和样本 ,个体,样本容量
2.简单随机抽样:从元素个数为N的总体中不放回地抽取容量为n样本,如果每一次抽取时总体中的各个个体有相同的的可能性被抽到。
3.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;
2.1.2系统抽样
1.系统抽样(等距抽样或机械抽样):当总体元素个数很大时,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本。
2.1.3分层抽样
1.分层抽样:当总体由明显差异的几部分组成时,将总体中各个个体按某种特征分层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样。
三种抽样方法的区别和联系:
类别 共同点 各自特点 相互联系 适用范围
简单随机抽样 抽样过程中每个个体被抽到的机会相等 从总体中逐个抽取 最基本的抽样方法 总体容量较小时
系统抽样 将总体分成均衡的几部分,按事先制定的规则在各部分抽取 在起始部分抽样时,采用简单随机抽样 总体容量较大时
分层抽样 将总体按某种特征分成几层,分层进行抽取 各层抽样时可采用简单随机抽样或系统抽样 总体由差异明显的几部分组成时
2.2.1用样本的频率分布估计总体的分布
1、列频率分布表,画频率分布直方图:
(1)计算极差(2)决定组数和组距(3)决定分点(4)列频率分布表(5)画频率分布直方图
2、茎叶图
2.2.2用样本的数字特征估计总体的数字特征
1、平均值:
2、.样本标准差:
3、(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变
(2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍
2.3.2两个变量的线性相关
1、概念:(1)回归直线方程: (2)回归系数: ,
2.应用直线回归的注意事项:回归分析前,最好先作出散点图;